Modeling generic size features of delamination, such as area or length, has long been considered in the literature for damage prognosis in composites through specific models describing damage state evolution with load cycles or time. However, the delamination shape has never been considered, despite that it holds important information for damage diagnosis and prognosis, including the delamination area, its center, and perimeter, useful for structural safety evaluation. In this context, this paper develops a novel particle filter (PF)-based framework for delamination shape prediction. To this end, the delamination image is discretized by a mesh, where control points are defined as intersections between the grid lines and the perimeter of the delamination. A parametric data-driven function maps each point position as a function of the load cycles and is initially fitted on a sample test. Then, a PF is independently implemented for each node whereby to predict their future positions along the mesh lines, thus allowing delamination shape progression estimates. The new framework is demonstrated with reference to experimental tests of fatigue delamination growth in composite panels with ultrasonics C-scan monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.