The fruits of Rosa roxburghii (R. roxburghii) Tratt., which are rich in bioactive compounds, provide numerous health benefits, yet the overall metabolism of R. roxburghii fruits and the metabolic profiles among different genotypes of R. roxburghii fruits are not fully understood. In the research, we used ultra-performance liquid chromatography/tandem mass spectrometry analysis to identify and quantify metabolites including phenolic acids, amino acids, and organic acids in six R. roxburghii genotypes; a total of 723 metabolites were identified. Comparative analysis showed some different characteristic metabolites in each genotype. Moreover, flavonoids, triterpenoids, and phenolic acids were significantly correlated with the antioxidant capacity of the fruit extract. Our results suggest that R. roxburghii fruits have rich bioactive metabolites beneficial to human health and that Rr-7 and Rr-f have more potential to be used as medicinal material or functional food than other genotypes. This research provides helpful information for developing new functional foods of R. roxburghii genotypes.
Ascorbic acid (AsA) is the most abundant antioxidant in plants and is an important nutritional index for agricultural products. Some plants, such as Rosa roxburghii Tratt., contain exceptionally high levels of AsA, but are relatively unpalatable. In view of its role in human health, as well as plant growth and development, we examined the effects of two important AsA regulatory genes from R. roxburghii in tomato, with the aim of producing a crop of higher nutritional quality. RrGGP2 and RrDHAR were cloned from R. roxburghii fruit. The overexpression vectors were made using 35S promoters and mediated by Agrobacterium tumefaciens to obtain the overexpression lines. A PCR and qRT-PCR verified that the two genes had been inserted and overexpressed in the tomato leaves and fruits. The results showed that the overexpression of RrGGP2 increased tomato leaf and fruit AsA content by 108.5% and 294.3%, respectively, while the overexpression of RrDHAR increased tomato leaf and fruit AsA content by 183.9% and 179.9%. The overexpression of RrGGP2 and RrDHAR further changed the expression of genes related to AsA metabolism, and the upregulation of one such gene, SlGGP, may have contributed greatly to the increase in AsA. Results here indicate that RrGGP2 contributes more towards fruit AsA accumulation in tomato than RrDHAR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.