The Grid-Connected Inverter (GCI) can be considered a gray box when circuit and controller parameters are missing due to intellectual property rights or parameter variations caused by aging, which poses an impediment to assessing the stability of the system. This paper presents a gray-box stability analysis method based on impedance identification of GCI considering the synchronization dynamics. The impedance frequency responses of GCI are measured by the frequency scanning method on the dq-frame. Meanwhile, the influence of synchronization dynamics and background harmonics is theoretically investigated. A vector fitting (VF) algorithm, co-designed with impedance identification, is then applied to generate polynomial transfer functions. Based on the obtained transfer functions, the stability of the GCI can be judged by the distance relationship between the prohibited area boundary and the center of the gershgorin-circle through the distance formula. Finally, the experiments of both RT-LAB and experimental prototypes are conducted to verify the feasibility of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.