The effect of codon context on amber codon-guided incorporation of noncanonical amino acids (NAAs) has been previously examined by antibiotic selection. Here, we re-explored this effect by screening a library in which three nucleotides upstream and downstream of the amber codon were randomised, and inserted within the lacZ-α gene. Thousands of clones were obtained and distinguished by the depth of blue colour upon exposure to X-gal. Large-scale sequencing revealed remarkable preferences in nucleotides downstream of the amber codon, and moderate preferences for upstream nucleotides. Nucleotide preference was quantified by a dual-luciferase assay, which verified that the optimum context for NAA incorporation, AATTAGACT, was applicable to different proteins. Our work provides a general guide for engineering amber codons into genes of interest in bacteria.
Adeno-associated virus (AAV) is one of the most extensively studied and utilized viral vectors in clinical gene transfer research. However, the serum instability and immunogenicity of AAV vectors significantly limit their application. Here, we endeavored to overcome these limitations by developing a straightforward approach for site-specific PEGylation of AAV via genetic code expansion. This technique includes incorporation of the azide moiety into the AAV capsid protein followed by orthogonal and stoichiometric conjugation of a variety of polyethylene glycols (PEGs) through click chemistry. Using this approach, only the chosen site(s) was consistently PEGylated under mild conditions, preventing nonselective conjugation. Upon a series of in vitro examinations, AAVs conjugated with 20-kD PEG at sites Q325+1, S452+1, and R585+1 showed a 1.7- to 2.4-fold stability improvement in pooled human serum and a nearly twofold reduction in antibody recognition. Subsequent animal research on Sprague Dawley rats displayed a promising 20% reduction in antibody inducement and a higher virus titer in the blood. Together, our data demonstrate successful protection of an AAV vector from antibody neutralization and blood clearance, thereby increasing the efficiency of therapeutic gene delivery.
Radioimmunotherapy (RIT) delivers radioisotopes to antigen-expressing cells via monoantibodies for the imaging of lesions or medical therapy. The chelates are typically conjugated to the antibody through cysteine or lysine residues, resulting in heterogeneous chelate-to-antibody ratios and various conjugation sites. To overcome this heterogeneity, we have developed an approach for site-specific radiolabeling of antibodies by combination of genetic code expansion and click chemistry. As a proof-of-concept study, model systems including anti-CD20 antibody rituximab, positron-emitting isotope Cu, and a newly synthesized bifunctional linker (4-dibenzocyclooctynol-1,4,7,10-tetraazacyclotetradecane-1,4,7,10-tetraacetic acid, DIBO-DOTA) were used. The approach consists of three steps: (1) site-specific incorporation of an azido group-bearing amino acid (NEAK) via the genetic code expansion technique at the defined sites of the antibody as a "chemical handle"; (2) site-specific and quantitative conjugation of bifunctional linkers with the antibodies under a mild condition; and (3) radiolabeling of the chelate-modified antibodies with the appropriate isotope. We used heavy-chain A122NEAK rituximab as proof-of-concept and obtained a homogeneous radioconjugate with precisely two chelates per antibody, incorporated only at the chosen sites. The conjugation did not alter the binding and pharmacokinetics of the rituximab, as indicated by in vitro assays and in vivo PET imaging. We believe our research is a good supplement to the genetic code expansion technique for the development of novel radioimmunoconjugates.
Adeno-associated virus 2 (AAV2) is a common vehicle for the delivery of a variety of therapeutic genes. A better understanding of the process of infection of AAV2 will advance our knowledge of AAV2 biology and allow for the optimization of AAV2 capsids with favorable transduction profiles. However, the precise fluorescent labeling of an AAV2 vector for probing virus tracking without affecting the nature of the virus remains a challenge. In this study, a lab-synthesized azide-moieties on the viral capsid at modifiable sites is precisely displayed. Upon bioorthogonal copper-less click reaction, fluorophores are subsequently conjugated to AAV2 vectors for visualization of particles. Using this principle, the authors demonstrate that it can be used for visibly studying the cell entry, and intracellular trafficking of AAV2 particles, enabling the monitoring of the intracellular dynamics of AAV2 infection. This study provides new insights into the precision labeling of AAV2 particles with important implications for a better understanding of the molecular mechanism of therapeutic gene delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.