Using resting-state functional magnetic resonance imaging, we examined the functional connectivity throughout the entire brain in schizophrenia. The abnormalities in functional connectivity were identified by comparing the correlation coefficients of each pair of 116 brain regions between 15 patients and 15 controls. Then, the global distribution of the abnormal functional connectivities was examined. Experimental results indicated, in general, a decreased functional connectivity in schizophrenia during rest, and such abnormalities were widely distributed throughout the entire brain rather than restricted to a few specific brain regions. The results provide a quantitative support for the hypothesis that schizophrenia may arise from the disrupted functional integration of widespread brain areas.
Automatic and reliable segmentation of subcortical structures is an important but difficult task in quantitative brain image analysis. Multi-atlas based segmentation methods have attracted great interest due to their promising performance. Under the multi-atlas based segmentation framework, using deformation fields generated for registering atlas images onto a target image to be segmented, labels of the atlases are first propagated to the target image space and then fused to get the target image segmentation based on a label fusion strategy. While many label fusion strategies have been developed, most of these methods adopt predefined weighting models that are not necessarily optimal. In this study, we propose a novel local label learning strategy to estimate the target image's segmentation label using statistical machine learning techniques. In particular, we use a L1-regularized support vector machine (SVM) with a k nearest neighbor (kNN) based training sample selection strategy to learn a classifier for each of the target image voxel from its neighboring voxels in the atlases based on both image intensity and texture features. Our method has produced segmentation results consistently better than state-of-the-art label fusion methods in validation experiments on hippocampal segmentation of over 100 MR images obtained from publicly available and in-house datasets. Volumetric analysis has also demonstrated the capability of our method in detecting hippocampal volume changes due to Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.