A new adaptive cell average spectral element method (SEM) is proposed to solve the time-dependent Wigner equation for transport in quantum devices. The proposed cell average SEM allows adaptive non-uniform meshes in phase spaces to reduce the high-dimensional computational cost of Wigner functions while preserving exactly the mass conservation for the numerical solutions. The key feature of the proposed method is an analytical relation between the cell averages of the Wigner function in the k-space (local electron density for finite range velocity) and the point values of the distribution, resulting in fast transforms between the local electron density and local fluxes of the discretized Wigner equation via the fast sine and cosine transforms. Numerical results with the proposed method are provided to demonstrate its high accuracy, conservation, convergence and a reduction of the cost using adaptive meshes.
In this paper, we derive the quantum hydrodynamics models based on the moment closure of the Wigner equation. The moment expansion adopted is of the Grad type firstly proposed in [18]. The Grad's moment method was originally developed for the Boltzmann equation. In [7], a regularization method for the Grad's moment system of the Boltzmann equation was proposed to achieve the globally hyperbolicity so that the local well-posedness of the moment system is attained. With the moment expansion of the Wigner function, the drift term in the Wigner equation has exactly the same moment representation as in the Boltzmann equation, thus the regularization in [7] applies. The moment expansion of the nonlocal Wigner potential term in the Wigner equation is turned to be a linear source term, which can only induce very mild growth of the solution. As the result, the local well-posedness of the regularized moment system for the Wigner equation remains as for the Boltzmann equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.