To improve the lifetime of mobile sink-based wireless sensor networks and considering that data transmission delay and hops are limited in actual system, a lifetime optimization algorithm limited by data transmission delay and hops (LOA_DH) for mobile sink-based wireless sensor networks is proposed. In LOA_DH, some constraints are analyzed, and an optimization model is proposed. Maximum capacity path routing algorithm is used to calculate the energy consumption of communication. Improved genetic algorithm which modifies individuals to meet all constraints is used to solve the optimization model. The optimal solution of sink node’s sojourn grid centers and sojourn times which maximizes network lifetime is obtained. Simulation results show that, in three node distribution scenes, LOA_DH can find the movement solution of sink node which covers all sensor nodes. Compared with MCP_RAND, MCP_GMRE, and EASR, the solution improves network lifetime and reduces average amount of node discarded data and average energy consumption of nodes.
In order to overcome the energy hole problem in some wireless sensor networks (WSNs), lifetime optimization algorithm with mobile sink nodes for wireless sensor networks (LOA MSN) is proposed. In LOA MSN, hybrid positioning algorithm of satellite positioning and RSSI positioning is proposed to save energy. Based on location information, movement path constraints, flow constraint, energy consumption constraint, link transmission constraint, and other constraints are analyzed. Network optimization model is established and decomposed into movement path selection model and lifetime optimization model with known grid movement paths. Finally, the two models are solved by distributed method. Sink nodes gather data of sensor nodes along the calculated paths. Sensor nodes select father nodes and transmit data to corresponding sink node according to local information. Simulation results show that LOA MSN makes full use of node energy to prolong network lifetime. LOA MSN with multiple sink nodes also reduces node energy consumption and data gathering latency. Under certain conditions, it outperforms MCP, subgradient algorithm, EASR, and GRAND.
With the gradual improvement of people’s living standards, the production and drinking of all kinds of food is increasing. People’s disease rate has increased compared with before, which leads to the increasing number of medical image processing. Traditional technology cannot meet most of the needs of medicine. At present, convolutional neural network (CNN) algorithm using chaotic recursive diagonal model has great advantages in medical image processing and has become an indispensable part of most hospitals. This paper briefly introduces the use of medical science and technology in recent years. The hybrid algorithm of CNN in chaotic recursive diagonal model is mainly used for technical research, and the application of this technology in medical image processing is analysed. The CNN algorithm is optimized by using chaotic recursive diagonal model. The results show that the chaotic recursive diagonal model can improve the structure of traditional neural network and improve the efficiency and accuracy of the original CNN algorithm. Then, the application research and comparison of medical image processing are performed according to CNN algorithm and optimized CNN algorithm. The experimental results show that the CNN algorithm optimized by chaotic recursive diagonal model can help medical image automatic processing and patient condition analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.