A discontinuous conduction mode (DCM) three-phase single-ended primary-inductor converter (SEPIC) is presented in this article. The analyzed converter operates as a high-power factor stage in AC–DC conversion systems. As its main features, it presents three controlled switches and a single control signal with simple implementation and low-current harmonic distortion. The converter topology, its design equations, and its operation modes are presented as well as a simulation analysis considering a 3 kW–220 V three-phase input to 400 V DC output converter. The experimental results are included, considering as an application the rectifier stage in low-power wind energy conversion systems (WECS) based on a 1 kW permanent magnet synchronous generator (PMSG) with variable voltage frequencies. From the analysis performed in the paper and the simulation and experimental results revealed, it is concluded that the converter is indicated to be employed in any AC–DC low-power conversion system, such as DC distribution systems, and distributed generation or hybrid systems containing variable-frequency generation.
Abstract:A new application of the three-phase buck-resonant converter is presented in this paper. It is shown that the analyzed converter is suitable to operate as the rectifier stage in low power wind energy conversion systems (WECS) based on permanent magnet synchronous generators (PMSG) with variable wind speed. As main features, it presents a single controlled switch, simple implementation and control, and operates with a high power factor and low harmonic distortion over all wind speed ranges. The converter topology, its design equations and its operation are presented, as well as the simulation results of the PMSG based conversion system. From the analysis carried out in the paper it is concluded that the converter is indicated to be employed in distributed generation and hybrid systems where wind generation is associated with other sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.