We have investigated the patterns of activation of epaxial musculature during both swimming and overground stepping in an adult newt (Pleurodeles waltl) with the use of electromyographic (EMG) recordings from different sites of the myomeric muscle dorsalis trunci along the body axis. The locomotor patterns of some limb muscles have also been investigated. During swimming, the epaxial myomeres are rhythmically active, with a strict alternation between opposite myomeres located at the same longitudinal site. The pattern of intersegmental coordination consists of three successively initiated waves of EMG activity passing posteriorly along the anterior trunk, the midtrunk, and the posterior trunk, respectively. Swimming is also characterized by a tonic activation of forelimb (dorsalis scapulae and extensor ulnae) and hindlimb (puboischiotibialis and puboischiofemoralis internus) muscles and a rhythmic activation of muscles (latissimus dorsi and caudofemoralis) acting both on limb and body axis. The latter matched the activation pattern of epaxial myomeres at the similar vertebral level. During overground stepping, the midtrunk myomeres express single synchronous bursts whereas the myomeres of the anterior trunk and those of the posterior trunk display a double bursting pattern in the form of two waves of EMG activity propagating in opposite directions. During overground stepping, the limb muscles and muscles acting on both limb and body axis were found to be rhythmically active and usually displayed a double bursting pattern. The main conclusion of this investigation is that the patterns of intersegmental coordination during both swimming and overground stepping in the adult newt are related to the presence of limbs and that they can be considered as hybrid lampreylike patterns. Thus it is hypothesized that, in newt, a chain of coupled segmental oscillatory networks, similar to that which constitutes the central pattern generator (CPG) for swimming in the lamprey, can account for both trunk motor patterns if it is influenced by limb CPGs in a way depending on the locomotor mode. During swimming, the segmental networks located close to the girdles receive extra tonic excitation coming from the limb CPGs, whereas during stepping, the axial CPGs are entrained to some extent by the limb oscillators.
Mutually inhibitory pacemaker neurons with duty cycle close to 50% operate as a half-center oscillator (anti-phase coordination, i.e., 180 degrees out of phase), even in the presence of weak to modest gap junctional coupling. For electrical coupling strength above a critical value synchronization occurs. But, as shown here with modeling studies, the effects of electrical coupling depend critically on a cell's duty cycle. Instead of oscillating either in-phase or anti-phase, model cells with short duty cycle express additional rhythmic patterns, and different transitions between them, depending on electrical coupling strength. For weak or no electrical coupling, cells do not oscillate in anti-phase but instead exhibit almost in-phase activity. Strengthening this weak coupling leads to stable anti-phase activity. With yet stronger electrical coupling stable inphase (synchrony) emerges but it coexists with the anti-phase pattern. Thus the network shows bistability for an intermediate range of coupling strength. For sufficiently strong electrical coupling synchrony is the network's only attracting rhythmic state. Our results, numerical and analytical (phase plane analysis), are based on a minimal but biophysically motivated pacemaker model for the slowly oscillating envelope of bursting neurons. However, illustrations for an Hodgkin-Huxley model suggest that some of our results for short duty cycle may extend to patterning of repetitive spikes. In particular, electrical coupling of intermediate strength may promote anti-phase activity and provide bistability of anti-phase and in-phase spiking.
Post-learning hippocampal sharp wave-ripples (SWRs) generated during slow wave sleep are thought to play a crucial role in memory formation. While in Alzheimer’s disease, abnormal hippocampal oscillations have been reported, the functional contribution of SWRs to the typically observed spatial memory impairments remains unclear. These impairments have been related to degenerative synaptic changes produced by soluble amyloid beta oligomers (Aβos) which, surprisingly, seem to spare the SWR dynamics during routine behavior. To unravel a potential effect of Aβos on SWRs in cognitively-challenged animals, we submitted vehicle- and Aβo-injected mice to spatial recognition memory testing. While capable of forming short-term recognition memory, Aβ mice exhibited faster forgetting, suggesting successful encoding but an inability to adequately stabilize and/or retrieve previously acquired information. Without prior cognitive requirements, similar properties of SWRs were observed in both groups. In contrast, when cognitively challenged, the post-encoding and -recognition peaks in SWR occurrence observed in controls were abolished in Aβ mice, indicating impaired hippocampal processing of spatial information. These results point to a crucial involvement of SWRs in spatial memory formation and identify the Aβ-induced impairment in SWRs dynamics as a disruptive mechanism responsible for the spatial memory deficits associated with Alzheimer’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.