Loss of telomeric DNA leads to telomere uncapping, which triggers a persistent, p53-centric DNA damage response that sustains a stable senescence-associated proliferation arrest. Here, we show that in normal cells telomere uncapping triggers a focal telomeric DNA damage response accompanied by a transient cell cycle arrest. Subsequent cell division with dysfunctional telomeres resulted in sporadic telomeric sister chromatid fusions that gave rise to next-mitosis genome instability, including non-telomeric DNA lesions responsible for a stable, p53-mediated, senescence-associated proliferation arrest. Unexpectedly, the blocking of Rad51/RPA-mediated homologous recombination, but not non-homologous end joining (NHEJ), prevented senescence despite multiple dysfunctional telomeres. When cells approached natural replicative senescence, interphase senescent cells displayed genome instability, whereas near-senescent cells that underwent mitosis despite the presence of uncapped telomeres did not. This suggests that these near-senescent cells had not yet acquired irreversible telomeric fusions. We propose a new model for telomere-initiated senescence where tolerance of telomere uncapping eventually results in irreversible non-telomeric DNA lesions leading to stable senescence. Paradoxically, our work reveals that senescence-associated tumor suppression from telomere shortening requires irreversible genome instability at the single-cell level, which suggests that interventions to repair telomeres in the pre-senescent state could prevent senescence and genome instability.
Introduction Rapid T cell reconstitution following hematopoietic stem cell transplantation is essential for protection against infections and has been associated with lower incidence of chronic graft-vs-host disease (cGVHD), relapse and transplant-related mortality (TRM). While cord blood (CB) transplants are associated with lower rates of cGVHD and relapse, their low stem cell content results in slower immune reconstitution and higher risk of graft failure, severe infections and TRM. Recently, results of a Phase I/II trial revealed that single UM171-expanded CB transplant allowed the use of smaller CB units without compromising engraftment. We now report on T cell reconstitution and immune function in patients transplanted with UM171-expanded CB grafts. Methods We performed a retrospective analysis of 20 patients treated with UM171-expanded CB and compared it to a contemporary cohort of 12 patients treated in the same institution who received unmanipulated CB transplant with similar conditioning regimens. Of note, no patient received ATG as part of the conditioning in either cohort. We used flow cytometry and TCR sequencing to evaluate T cell reconstitution, and virus-specific ELISpot assays to evaluate T cell function in the first year post-transplantation. We also categorized infectious events as per definitions of infection severity in the BMT CTN Technical MOP Version 3.0 and report the mean cumulative count of infectious events for each cohort. Results While median T cell dose in graft was at least 2-3x lower for the cohort of patients treated with UM171-expanded CB due to the selection of smaller cords and to cell loss occurring during CD34 selection process, numbers and phenotype of T cells at 3, 6 and 12 months post-transplant were similar in patients treated with UM171-expanded or unmanipulated CB transplant. TCR sequencing analyses revealed that UM171 patients had greater T cell diversity and higher numbers of T cell clonotypes at 12 months post-transplant compared to patients who received unmanipulated CB. Younger UM171 patients (i.e. <40 years old) also showed a more pronounced increase in naïve T cells and recent thymic emigrants (RTE) between 3- and 12-months post-transplant compared to age-matched unmanipulated CB patients, suggesting that UM171-expansion improves thymopoiesis at least in the young patients. This also correlated with the demonstration that UM171 expands common lymphoid progenitors in vitro. ELISpot assays revealed that UM171 patients showed early virus-specific T cell reactivity, at 2- and 3-months post-transplant. Most importantly, UM171 patients had a 2-fold lower frequency of severe (i.e. grade 2-3) infections at 1 year post-transplant, even though time to engraftment of 500 neutrophils was similar between the two cohorts (17 and 20 days for the UM171-expanded and unmanipulated CB cohorts respectively, p=0.94). Conclusion Our data show that the relative T-cell paucity of the UM171 graft is rapidly compensated after transplant with no significant difference observed between the two cohorts in terms of numbers and phenotypes of T cells at 3, 6 or 12 months post-transplant. Although it is difficult to dissect the relative contribution of homeostatic expansion and de novo thymopoiesis, recipients of UM171 grafts had a greater TCR diversity at one year, which was more evident among patients younger than 40 years of age. The prompt immune reconstitution observed in UM171 patients translated into a low rate of severe (grade 2-3) infections and no infection-related mortality. These results support rapid and functional T cell reconstitution following UM171 expanded CB transplantation, which likely contributes to the absence of moderate/severe cGVHD, infection-related mortality and late TRM observed in this cohort. Figure legend: Mean cumulative counts of infectious events in patients transplanted with UM171-expanded (blue) or unmanipulated (red) CB. Mean cumulative counts are shown for all infectious events (A), bacterial (B) and viral (C) infections. Events were categorized by type and severity as per BMT CTN guidelines (Appendix 4A). Infectious events of grade 1-3 are shown in pale colors, while more severe events (grade 2-3) are shown in dark colors. Censored patients (including those who relapsed) are indicated with white circles. Figure 1 Disclosures Dumont-Lagacé: ExCellThera: Current Employment. Busque:Novartis: Honoraria; BMS: Honoraria; Pfizer: Honoraria. Sauvageau:ExCellThera: Current equity holder in private company, Other: CEO, Patents & Royalties. Cohen:ExCellThera: Consultancy, Other: principal investigator of an ongoing UM171 clinical trial.
Rapid T cell reconstitution following hematopoietic stem cell transplantation (HSCT) is essential for protection against infections and has been associated with lower incidence of chronic graft-versus-host disease (cGVHD), relapse, and transplant-related mortality (TRM). While cord blood (CB) transplants are associated with lower rates of cGVHD and relapse, their low stem cell content results in slower immune reconstitution and higher risk of graft failure, severe infections, and TRM. Recently, results of a phase I/II trial revealed that single UM171-expanded CB transplant allowed the use of smaller CB units without compromising engraftment (www.clinicaltrials.gov, NCT02668315). We assessed T cell reconstitution in patients who underwent transplantation with UM171expanded CB grafts and retrospectively compared it to that of patients receiving unmanipulated CB transplants. While median T cell dose infused was at least 2 to 3 times lower than that of unmanipulated CB, numbers and phenotype of T cells at 3, 6, and 12 months post-transplant were similar between the 2 cohorts. T cell receptor sequencing analyses revealed that UM171 patients had greater T cell diversity and higher numbers of clonotypes at 12 months post-transplant. This was associated with higher counts of naive T cells and recent thymic emigrants, suggesting active thymopoiesis and correlating with the demonstration that UM171 expands common lymphoid progenitors in vitro. UM171 patients also showed rapid virus-specific T cell reactivity and significantly reduced incidence of severe infections. These results suggest that UM171 patients benefit from rapid T cell reconstitution, which likely contributes to the absence of moderate/severe cGVHD, infection-related mortality, and late TRM observed in this cohort.
Objective: Giardiasis, a zoonotic, diarrhoeal disease with worldwide occurrence, is routinely diagnosed by microscopic examination of stool samples. However, implementation of this method relies on skilled personal, it is time consuming and relatively low in sensitivity. A superior diagnostic approach to detect the causative agent Giardia intestinalis would, hence, be highly desirable. The current study aimed to assess real-time polymerase chain reaction (PCR) for the detection of G. intestinalis as an alternative to microscopy. Material and methods:Stool samples from healthy schoolchildren, aged 8-14 years, from eight schools of the Centre-Ouest and Plateau Central regions in Burkina Faso were collected within a cross-sectional study in February 2015. Microscopic examination was performed on two faecal samples collected over two consecutive days from 441 schoolchildren. Each faecal specimen was examined using Kato-Katz and formol-ether methods of concentration in addition to direct examination. Real-time PCR was used to detect G. intestinalis in all microscopy-positive and a random sample of microscopy-negative samples.Results: Microscopic examination revealed 94 microscopy-positive samples, and an overall G. intestinalis prevalence of 27.2%. Using the microscopic examination as the 'gold' standard, the overall sensitivity of real-time PCR was demonstrated to be 76.6% ranging from 58.3% to 94.1% and the specificity was 96.2% ranging from 96.2% to 100% across schools. Conclusion:Real-time PCR appears to be a solid detection method for G. intestinalis in the current setting. However, it needs to be further optimized to become a more sensitive tool for G. intestinalis diagnosis in low-income settings.
Background: The diagnosis and treatment of active tuberculosis and the detection/management of latent tuberculosis infection (LTBI) cases are the two main strategies for the TB control, particularly in endemic countries. Tuberculin skin test (TST) and Interferon Gamma Release Assays (IGRAs) are tools for detection of LTBI. The objective of this study was to evaluate the performance of the TST and QuantiFERON-TB Gold Plus ® (QTF-Plus) and to identify a threshold for TST in best agreement with QTF-Plus for LTBI detection in a high TB burden setting. Methods: In July 2020, a cross-sectional analytical study was performed for QFT-Plus using blood samples and TST in 101 individuals with a high risk of TB living in Bobo-Dioulasso, Burkina Faso. A crude comparison between both tests was done and receiver operating characteristic curve was generated to determine TST's threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.