Lignin valorization and particularly its depolymerization into bio‐aromatics, has emerged as an important research topic within green chemistry. However, screening of catalysts and reaction conditions within this field is strongly constrained by the lack of analytical techniques that allow for fast and detailed mapping of the product pools. This analytical gap results from the inherent product pool complexity and the focus of the state‐of‐the‐art on monomers and dimers, overlooking the larger oligomers. In this work, this gap is bridged through the development of a quasi‐orthogonal GPC‐HPLC‐UV/VIS method that is able to separate the bio‐aromatics according to molecular weight (hydrodynamic volume) and polarity. The method is evaluated using model compounds and real lignin depolymerization samples. The resulting color plots provide a powerful graphical tool to rapidly assess differences in reaction selectivity towards monomers and dimers as well as to identify differences in the oligomers.
Lignin is a promising biopolymer to serve as a sustainable resource for a multitude of applications (e.g., thermoset materials, production of bulk chemicals) thereby substituting fossil-based carbon sources. In this work, the reductive depolymerization of Kraft lignin (KL) was studied in ethanol/water aided by formic acid (FA) as the way forward to valorize lignin. The effect of various process conditions was elucidated using 31 P-NMR, pH, GPC, CHNSO, GC-MS and 2D-LC analyses. It is found that the addition of a small amount of FA (3.6 vol%) is beneficial for obtaining smaller lignin fragments with more phenolic OH (PhOH) functionalities upon depolymerization at 250°C for 8h. Besides, a higher FA concentration causes acid catalyzed lignin repolymerization and a longer reaction time results in only a limited reduction in molecular weight of the obtained lignin fragments. The addition of a supported Pd catalyst leads to a more pronounced depolymerization (smaller lignin fragments with more PhOH functionalities) as well as a stronger decrease in oxygen and sulfur content. Furthermore, several experiments and multiple analysis techniques support the hypothesis that FA acts as H2 donor under the investigated conditions in this study. In conclusion, KL (MW ~16436 g mol -1 and 3.31 mmol g -1 PhOH) was successfully depolymerized into a low molecular weight lignin (MW ~3250 g mol -1 ) with more PhOH functionalities (5.29 mmol g -1 ).
Monometallic cerium layered double hydroxides (Ce-LDH) supports were successfully synthesized by a homogeneous alkalization route driven by hexamethylenetetramine (HMT). The formation of the Ce-LDH was confirmed and its structural and compositional properties studied by XRD, SEM, XPS, iodometric analyses and TGA. HT-XRD, N2-sorption and XRF analyses revealed that by increasing the calcination temperature from 200 to 800 °C, the Ce-LDH material transforms to ceria (CeO2) in four distinct phases, i.e., the loss of intramolecular water, dehydroxylation, removal of nitrate groups and removal of sulfate groups. When loaded with 2.5 wt% palladium (Pd) and 2.5 wt% nickel (Ni) and calcined at 500 °C, the PdNi-Ce-LDH-derived catalysts strongly outperform the PdNi-CeO2 benchmark catalyst in terms of conversion as well as selectivity for the hydrogenolysis of benzyl phenyl ether (BPE), a model compound for the α-O-4 ether linkage in lignin. The PdNi-Ce-LDH catalysts showed full selectivity towards phenol and toluene while the PdNi-CeO2 catalysts showed additional oxidation of toluene to benzoic acid. The highest BPE conversion was observed with the PdNi-Ce-LDH catalyst calcined at 600 °C, which could be related to an optimum in morphological and compositional characteristics of the support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.