Low back pain remains a highly prevalent pathology engendering a tremendous socioeconomic burden. Low back pain is generally associated with intervertebral disc (IVD) degeneration, a process involving the deterioration of nucleus pulpous (NP) cells and IVD matrix. Scientific interest has directed efforts to restoring cell numbers as a strategy to enable IVD regeneration. Currently, mesenchymal stromal cells (MSCs) are being explored as cell therapy agents, due to their easy accessibility and differentiation potential. For enhancement of MSCs, growth factor supplementation is commonly applied to induce differentiation towards a chondrogenic (NP) cell phenotype. The wnt signaling pathways play a crucial role in chondrogenesis, nonetheless, literature appears to present controversies with regard to wnt3a and wnt5a for the induction of NP cells, chondrocytes, and MSCs. This review aims to summarize the reporting on wnt3a/wnt5a mediated NP cell differentiation, and to elucidate the mechanisms involved in wnt3a and wnt5a mediated chondrogenesis for potential application as cell therapy supplements for IVD regeneration. Our review suggests that wnt3a, subsequently replaced with a chondrogenic stimulating growth factor, can enhance the chondrogenic potential of MSCs in vitro. Contrariwise, wnt5a is suggested to play a role in maintaining cell potency of differentiated NP or chondrogenic cells.
Background: Multiple studies have examined the potential of growth factors (GF) to enable mesenchymal stromal cells (MSC) to nucleus pulposus (NP) cell-like cell differentiation. Here we screened a wide range of GF and GF combinations for supporting NP cell-like cell differentiation. Methods: Human MSC were stimulated using 86 different GF combinations of TGF-β1, -2, -3, GDF5, -6, Wnt3a, -5a, -11, and Shh. Differentiation potency was assessed by alcian blue assay and NP cell marker expression (e.g., COL2A1, CD24, etc.). The top four combinations and GDF5/TGF-β1 were further analyzed in 3D pellet cultures, on their ability to similarly induce NP cell differentiation. Results: Almost all 86 GF combinations showed their ability to enhance proteoglycan production in alcian blue assay. Subsequent qPCR analysis revealed TGF-β2/Wnt3a, TGF-β1/Wnt3a, TGF-β1/Wnt3a/GDF6, and Wnt3a/GDF6 as the most potent combinations. Although in pellet cultures, these combinations supported NP marker expression, none showed the ability to significantly induce chondrogenic NP matrix production. Only GDF5/TGF-β1 resulted in chondrogenic pellets with significantly enhanced glycosaminoglycan content. Conclusion: GDF5/TGF-β1 was suggested as an optimal GF combination for MSC to NP cell induction, although further assessment using a 3D and in vivo environment is required. Wnt3a proved promising for monolayer-based NP cell differentiation, although further validation is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.