The multistart clustering global optimization method called GLOBAL has been introduced in the 1980s for bound constrained global optimization problems with black-box type objective function. Since then the technological environment has been changed much. The present paper describes shortly the revisions and updates made on the involved algorithms to utilize the novel technologies, and to improve its reliability. We discuss in detail the results of the numerical comparison with the old version and with C-GRASP, a continuous version of the GRASP method. According to these findings, the new version of GLOBAL is both more reliable and more efficient than the old one, and it compares favorably with C-GRASP too.
Abstract. The role of the interval subdivision selection rule is investigated in branch-and-bound algorithms for global optimization. The class of rules that allow convergence for the model algorithm is characterized, and it is shown that the four rules investigated satisfy the conditions of convergence. A numerical study with a wide spectrum of test problems indicates that there are substantial di erences between the rules in terms of the required CPU time, the number of function and derivative e v aluations and space complexity, and two rules can provide substantial improvements in e ciency.
Respiratory mechanical impedances were determined during voluntary apnea in five healthy subjects, by means of 0.25- to 5-Hz pseudo/random oscillations applied at the mouth. The total respiratory impedance was partitioned into pulmonary (ZL) and chest wall components with the esophageal balloon technique; corrections were made for the upper airway shunt impedance and the compressibility of alveolar gas. Neglect of these shunt effects did not qualitatively alter the frequency dependence of impedances but led to underestimations in impedance, especially in the chest wall resistance (Rw), which decreased by 20-30% at higher frequencies. The total resistance (Rrs) was markedly frequency dependent, falling from 0.47 +/- 0.06 (SD) at 0.25 Hz to 0.17 +/- 0.01 at 1 Hz and 0.15 +/- 0.01 kPa X l-1 X s at 5 Hz. The changes in Rrs were caused by the frequency dependence of Rw almost exclusively between 0.25 and 2 Hz and in most part between 2 and 5 Hz. The effective total respiratory (Crs,e) and pulmonary compliance were computed with corrections for pulmonary inertance derived from three- and five-parameter model fittings of ZL. Crs,e decreased from the static value (1.03 +/- 0.18 l X kPa-1) to a level of approximately 0.35 l X kPa-1 at 2-3 Hz; this change was primarily caused by the frequency-dependent behavior of chest wall compliance.
Abstract. This paper investigates the in uence of the interval subdivision selection rule on the convergenceof interval branch-and-bound algorithmsfor global optimization. F or the class of rules that allows convergence, we study the e ects of the rules on a model algorithm with special list ordering. Four di erent rules are investigated in theory and in practice. A wide spectrum of test problems is used for numerical tests indicating that there are substantial di erences between the rules with respect to the required CPU time, the number of function and derivative e v aluations, and the necessary storage space. Two rules can provide considerable improvements in e ciency for our model algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.