233 343 184 Recently, there is a great effort to increase the deposition area and decrease the process temperature for diamond growth which will enlarge its applications including use of temperature sensitive substrates. In this work, we report on the large area (20 Â 30 cm 2 ) and low temperature (250 8C) polycrystalline diamond growth by pulsed linear antenna microwave plasma system. The influence of substrate temperature varied from 250 to 680 8C, as controlled by the table heater and/or by microwave power, is studied. It was found that the growth rate, film morphology and diamond to non-diamond phases (sp 3 /sp 2 carbon bonds) are influenced by the growth temperature, as confirmed by SEM and Raman measurements. The surface chemistry and growth processes were studied in terms of activation energies (E a ) calculated from Arrhenius plots. The activation energies of growth processes were very low (1.7 and 7.8 kcal mol À1 ) indicating an energetically favourable growth process from the CO 2 -CH 4 -H 2 gas mixture. In addition, from activation energies two different growth regimes were observed at low and high temperatures, indicating different growth mechanism.
The last few decades faced on the fabrication of advanced engineering materials involving also different composites. Here, we report on the fabrication of few-layer molybdenum disulfide on top of thin polycrystalline diamond substrates with a high specific surface area. In the method, pre-deposited molybdenum coatings were sulfurized in a one-zone furnace at ambient pressure. As-prepared MoS2 layers were characterized by several techniques including grazing-incidence wide-angle X-ray scattering, atomic force microscopy, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. We found out that the initial thickness of Mo films determined the final c-axis crystallographic orientation of MoS2 layer as previously observed on other substrates. Even though it is well-known that Mo diffuses into diamond at elevated temperatures, the competing sulfurization applied effectively suppressed the diffusion and a chemical reaction between molybdenum and diamond. In particular, a Mo2C layer does not form at the interface between the Mo film and diamond substrate. The combination of diamond high specific surface area along with a controllable layer orientation might be attractive for applications, such as water splitting or water disinfection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.