In medical endoscopy more and more surgeons archive the recorded video streams in a long-term storage. One reason for this development, which is enforced by law in some countries, is to have evidence in case of lawsuits from patients. Another more practical reason is to allow later inspection of previous procedures and also to use parts of such videos for research and for training. However, due to the dramatic amount of video data recorded in a hospital on a daily basis, it is very important to have good preview images for these videos in order to allow for quick filtering of undesired content and for easier browsing through such a video archive. Unfortunately, common shot detection and keyframe extraction methods cannot be used for that video data, because these videos contain unedited and highly similar content, especially in terms of color and texture, and no shot boundaries at all. We propose a new keyframe extraction approach for this special video domain and show that our method is significantly better than a previously proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.