The pattern of lung response caused by intravenous Mch and Ova are fundamentally different. Although inhaled Mch induces a heterogeneous lung response similar to that observed with intravenous allergen, these similar patterns are due to different mechanisms.
Electrical stimulation of intercostal muscles was employed to measure thoracic gas volume (TGV) during airway occlusion in the absence of respiratory effort at different levels of lung inflation. In 15 tracheostomized and mechanically ventilated CBA/Ca mice, the value of TGV obtained from the spontaneous breathing effort available in the early phase of the experiments (TGVsp) was compared with those resulting from muscle stimulation (TGVst) at transrespiratory pressures of 0, 10, and 20 cmH2O. A very strong correlation (r2= 0.97) was found, although with a systematically (approximately 16%) higher estimation of TGVst relative to TGVsp, attributable to the different durations of the stimulated (approximately 50 ms) and spontaneous (approximately 200 ms) contractions. Measurements of TGVst before and after injections of 0.2, 0.4, and 0.6 ml of nitrogen into the lungs in six mice resulted in good agreement between the change in TGVst and the injected volume (r2= 0.98). In four mice, TGVsp and TGVst were compared at end expiration with air or a helium-oxygen mixture to confirm the validity of isothermal compression in the alveolar gas. The TGVst values measured at zero transrespiratory pressure in all CBA/Ca mice [0.29 +/- 0.05 (SD) ml] and in C57BL/6 (N = 6; 0.34 +/- 0.08 ml) and BALB/c (N = 6; 0.28 +/- 0.06 ml) mice were in agreement with functional residual capacity values from previous studies in which different techniques were used. This method is particularly useful when TGV is to be determined in the absence of breathing activity, when it must be known at any level of lung inflation or under non-steady-state conditions, such as during pharmaceutical interventions.
A tracking impedance estimation technique was developed to follow the changes in total respiratory impedance (Zrs) during slow total lung capacity maneuvers in six anesthetized and mechanically ventilated BALB/c mice. Zrs was measured with the wave-tube technique and pseudorandom forced oscillations at nine frequencies between 4 and 38 Hz during inflation from a transrespiratory pressure of 0-20 cmH2O and subsequent deflation, each lasting for approximately 20 s. Zrs was averaged for 0.125 s and fitted by a model featuring airway resistance (Raw) and inertance, and tissue damping and elastance (H). Lower airway conductance (Glaw) was linearly related to volume above functional residual capacity (V) between 0 and 75-95% maximum V, with a mean slope of dGlaw/dV = 13.6 +/- 4.6 cmH2O-1. s-1. The interdependence of Raw and H was characterized by two distinct and closely linear relationships for the low- and high-volume regions, separated at approximately 40% maximum V. Comparison of Raw with the highest-frequency resistance of the total respiratory system revealed a marked volume-dependent contribution of tissue resistance to total respiratory system resistance, resulting in the overestimation of Raw by 19 +/- 8 and 163 +/- 40% at functional residual capacity and total lung capacity, respectively, whereas the lowest frequency reactance was proportional to H; these findings indicate that single-frequency resistance values may become inappropriate as surrogates of Raw when tissue impedance is changing.
The lack of an LPR, limited EPR and the absence of a link between the LPR and AHR highlight the limitations of this mouse model as a complete model of the lung dysfunction associated with asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.