The present work is devoted to the analysis of non-linear heat transfer problems using the recent development of consective-interpolation procedure. Approximation of temperature is enhanced by taking into account both the nodal values and their averaged nodal gradients, which results in an improved finite element model. The novel formulation possesses many desirable properties including higher accuracy and higher-order continuity, without any change of the total number of degrees of freedom. The non-linear heat transfer problems equation is linearized and iteratively solved by the Newton-Raphson scheme. To show the accuracy and efficiency of the proposed method, several numerical examples are hence considered and analyzed.
Hyperelastic materials are special types of material that tends to behavior elastically when they are subjected to very large strains. These materials show not only the nonlinear material behavior but also the large deformation and stress-strain relationship is derived from a strain energy density function. Hyperelastic materials are widely used in many applications such as biological tissues, polymeric foams, and moreover. Neo - Hookean is a material model for hyperelastic solid which contains only two material parameters: bulk modulus and shear modulus. In the field of numerical analysis, the radial point interpolation method (RPIM) is a well-known meshfree method based on Garlekin's weak form. With the property of “free of mesh”, the RPIM approach shows its advantage for large deformation problems. In this study, a meshless radial point interpolation method is applied to demonstrate the elastic response of rubber-like materials based on the Mooney- Rivlin model. The obtained results are compared with the reference solutions given by other methods to verify the accuracy of the proposed method.
With people's health status according to statistics getting worse and worse, improving the quality of health is an inevitable need that many researchers are interested in. In addition to improving through eating, improving the living environment in homes and workplaces is also essential. Nowadays, many countries around the world have implemented many house models that apply natural ventilation instead of artificial air conditioning system, because natural wind is better and also feels more comfortable. Therefore, the study of controlled natural wind-catching architecture is necessary and consistent. Research in this field can help improve the living environment for people. The objective of the paper is to simulate ventilation solutions based on experience in construction works by finite volume method through ANSYS software to consider and evaluate the feasibility of these solutions. If the simulation results match or approximate the actual verified results, they can be applied to the improvement of natural ventilation structures to create a better indoor living environment, meeting the requirements of the environment. more comfortable diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.