To effectively restrain the lateral vibration caused by the guide rail excitation and improve the ride comfort of the car system, a state-weighted linear quadratic regulator (LQR) control strategy is proposed. Firstly, based on the active control model of the 4-DOF car system with actuators distributed diagonally along the center of the car frame, an LQR controller for lateral vibration of high-speed elevator car systems is designed. Furthermore, in view of the tedious and time-consuming of the empirical method to choose state-weighted matrix Q, stepping quantum genetic algorithm (SQGA) is proposed to improve the performance of the controller. Finally, the time-frequency characteristic curves of the lateral vibration acceleration and the vibration displacement of the car system are compared and analyzed by MATLAB to verify the effectiveness of the proposed controller.
In purpose of reducing the severe horizontal vibration of the high-speed elevator car system which is caused by the excitation of the guide rail, an adaptive sliding mode controller with fuzzy switching gain (FGASMC) is designed in this paper. At first, a 4-DOF active control dynamics model of the horizontal vibration of the elevator car is designed, on which the actuators are symmetrically distributed around the cabin center, and the accuracy of which is demonstrated by experiments. Considering the uncertainty caused by the load conditions, structural mass of the elevator, and the output gain of actuators, a Takagi-Sugeno (TS) model for controlling horizontal vibration of the car system is derived based on the designed 4-DOF dynamics model. Then, based on the TS model mentioned above, an adaptive sliding mode controller (ASMC) for suppressing the horizontal vibration of the car system is designed by a quadratic index method. To ensure the reachability of the sliding mode and keep the chattering smaller, the fuzzy method is utilized to adjust the switching gain of the ASMC. For that, an FGASMC is proposed. Finally, the effectiveness of the proposed controller is verified by MATLAB simulation. The results illustrate that the designed FGASMC can effectively suppress horizontal vibration of the high-speed elevator car system, and the control effect of which is obviously superior than the linear quadratic regulator optimized by genetic algorithm, which provides a new idea for active vibration reduction of high-speed elevator car.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.