A white spot lesion is the first clinical sign of a caries lesion and represents mineral loss from the enamel subsurface. The purpose of this study was to evaluate the microhardness and surface roughness of white spot lesions after application of a resin infiltrant and subjection to different challenges. Caries-like lesions were induced in bovine enamel discs (n=50), and the specimens were randomly divided into five study groups (n=10): demineralized enamel (negative control, G1), infiltrated enamel (G2), infiltrated enamel submitted to brushing (G3), infiltrated enamel submitted to pH cycling (G4), and infiltrated enamel submitted to artificial aging (G5). Half of each enamel surface was used as its own positive control. Roughness data were analyzed using the Kruskal-Wallis test followed by the Dunn test. Results from microhardness were analyzed by two-way analysis of variance, followed by the Tukey test for multiple comparisons. The level of significance was set at 5%. Microhardness and roughness values obtained from the test side of the specimens were significantly lower compared with the sound enamel for all groups. Microhardness values obtained for G2, G3, and G5 were not significantly different. Values found for G1 were significantly lower compared with those for G2, G3, and G5. The lowest microhardness values were observed for G4, which was significantly different from the other groups. Surface roughness was not significantly different between G2 and G3. The resin infiltrant presented superiority over the unprotected white spot lesions, as they were more resistant to mechanical and aging challenges. However, resin infiltration was not able to reestablish the properties of sound enamel and was not resistant to a new cariogenic challenge.
Minimally invasive caries-removal procedures remove only caries-infected dentin and preserve caries-affected dentin that becomes remineralized. Dental cements containing calcium phosphate promote remineralization. This study evaluated the in vivo remineralization capacity of resin-based calcium-phosphate cement (Ca-P) used for indirect pulp-capping. Carious and sound teeth indicated for extraction were randomly restored with the Ca-P base or without base (control), followed by adhesive restoration. Study teeth were extracted after three months, followed by elemental analysis of the cavity floor. Mineral content of affected or sound dentin at the cavity floor was quantified by electron probe micro-analysis to 100-mum depth. After three months, caries-affected dentin underneath the Ca-P base showed significantly increased calcium and phosphorus content to a depth of 30 mum. Mineral content of treated caries-affected dentin was in the range of healthy dentin, revealing the capacity of Ca-P base to promote remineralization of caries-affected dentin.
The aim of this study was to compare, in different periods of time, the compressive and diametral tensile strength of a traditional high viscous glass ionomer cement: Fuji IX (GC Corporation), with two new Brazilian GIC's: Vitro-Molar (DFL) and Bioglass R (Biodinamica), all indicated for the Atraumatic Restorative Treatment (ART) technique. Fifteen disk specimens (6.0mm diameter x 3.0mm height) for the diametral tensile strength (DTS) test and fifteen cylindrical specimens (6.0mm diameter x 12.0mm height) for the compressive strength (CS) test were made of each GIC. Specimens were stored in deionized water at 37º C and 100% of humidity in a stove until testing. Five specimens of each GIC were submitted to CS and DTS test in each period, namely 1 hour, 24 hours and 7 days. The specimens were tested in a testing machine (Emic) at a crosshead speed of 1.0mm/min for CS and 0.5mm/min for the DTS test until failure occurred. The data were submitted to two-way ANOVA and Tukey tests (alpha=0.05). The mean CS values ranged from 42.03 to 155.47MPa and means DTS from 5.54 to 13.72 MPa, with test periods from 1h to 7 days. The CS and DTS tests showed no statistically significant difference between Fuji IX and Vitro Molar, except for CS test at 1-hour period. Bioglass R had lowest mean value for CS of the cements tested. In DTS test Bioglass R presented no statistically significant differences when compared with all others tested GICs at 1-hour period and Bioglass R presented no difference at 24-hour and 7-day periods when compared to Vitro-Molar. Further studies to investigate other physical properties such as fracture toughness and wear resistance, as well as chemical composition and biocompatibility, are now needed to better understand the properties of these new Brazilian GIC's.
Superficial irregularities and certain intrinsic stains on the dental enamel surfaces can be resolved by enamel microabrasion, however, treatment for such defects need to be confined to the outermost regions of the enamel surface. Dental bleaching and resin-based composite repair are also often useful for certain situations for tooth color corrections. This article presented and discussed the indications and limitations of enamel microabrasion treatment. Three case reports treated by enamel microabrasion were also presented after 11, 20 and 23 years of follow-ups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.