Biomethane generated from renewable sources can be used as a renewable fuel to achieve ambitious targets for biofuels. The development of adsorption-based technologies for purification of biogas requires knowledge of adsorption equilibria and kinetics of pure gases on a specific adsorbent material. In this work, we have measured adsorption equilibria of CO2, CH4, and N2 at (299, 323, 348, 373, and 423) K over a pressure range between (0 and 700) kPa on a carbon honeycomb monolith. The adsorption capacity of the activated carbon honeycomb monolith was CO2 > CH4 > N2. The multisite Langmuir model was employed to fit the data of the pure gases offering the possibility of direct prediction of multicomponent adsorption equilibria. The diffusion of single gases in the microporous structure of the activated carbon honeycomb monolith was studied by diluted breakthrough experiments. The experiments were performed over the same temperature range [(303 to 423) K]. A simplified 1D mathematical model was employed in the description of the adsorption phenomenon. The data reported in this work allows modeling of adsorption processes such as pressure swing adsorption (PSA) and temperature swing adsorption (TSA).
Water vapor needs to be removed from many industrial streams using, for example, adsorption processes. Equilibrium and kinetic data are essential for the design of these adsorption processes. In this work, the adsorption equilibrium isotherms of water vapor were measured at 303 K by a gravimetric system on three commercial adsorbents, an activated carbon, an activated alumina, and a zeolite. The zeolite sample presented the highest capacity at low relative pressures, while at pressures near saturation the higher amount adsorbed was obtained on the alumina sample. The experimental points obtained for the activated carbon and the zeolite were fitted with the Virial isotherm while the n-layer BET equation was used in the fitting of the alumina data. The adsorption kinetics was evaluated through the analysis of breakthrough curves obtained at the same temperature for different feed humidity values. The fixed bed behavior was described using an isothermal model that includes axial dispersion and external (film model) and internal (homogeneous LDF model) mass transfer resistances. The homogeneous diffusivity values were determined by adjusting the model to the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.