Edge computing is a new paradigm, which provides storage, computing, and network resources between the traditional cloud data center and terminal devices. In this paper, we concentrate on the application-driven task offloading problem in edge computing by considering the strong dependencies of sub-tasks for multiple users. Our objective is to joint optimize the total delay and energy generated by applications, while guaranteeing the quality of services of users. First, we formulate the problem for the application-driven tasks in edge computing by jointly considering the delays and the energy consumption. Based on that, we propose a novel Application-driven Task Offloading Strategy (ATOS) based on deep reinforcement learning by adding a preliminary sorting mechanism to realize the joint optimization. Specifically, we analyze the characteristics of application-driven tasks and propose a heuristic algorithm by introducing a new factor to determine the processing order of parallelism sub-tasks. Finally, extensive experiments validate the effectiveness and reliability of the proposed algorithm. To be specific, compared with the baseline strategies, the total cost reduction by ATOS can be up to 64.5% on average.
With continuous development of artificial intelligence, text classification has gradually changed from a knowledge-based method to a method based on statistics and machine learning. Among them, it is a very important and efficient way to classify text based on the convolutional neural network (CNN) model. Text data are a kind of sequence data, while time sequentiality of the general text data is relatively weak, so text classification is usually less relevant to the sequential structure of the full text. Therefore, CNN-based text classification has gradually become a research hotspot when dealing with issues of text classification. For machine learning, especially deep learning, model interpretability has increasingly become the focus of academic research and industrial applications, and also become a key issue for further development and application of deep learning technology. Therefore, we recommend using the backtracking analysis method to conduct in-depth research on deep learning models. This paper proposes an analysis method for interpretability of a CNN text classification model. The method proposed by us can perform multi-angle analysis on the discriminant results of multi-classified text and multi-label classification tasks through backtracking analysis on model prediction results. Finally, the analysis results of the model can be displayed using visualization technology from multiple dimensions based on interpretability. The representative data set IMDB (Internet Movie Database) in text classification is verified by examples, and the results show that the model can be effectively analyzed when using our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.