Prized for their ability to rapidly generate chemical complexity by building new ring systems and stereocentres, cycloaddition reactions have featured in numerous total syntheses and are a key component in the education of chemistry students. Similarly, carbon-carbon (C-C) cross-coupling methods are integral to synthesis because of their programmability, modularity and reliability. Within the area of drug discovery, an overreliance on cross-coupling has led to a disproportionate representation of flat architectures that are rich in carbon atoms with orbitals hybridized in an sp manner. Despite the ability of cycloadditions to introduce multiple carbon sp centres in a single step, they are less used. This is probably because of their lack of modularity, stemming from the idiosyncratic steric and electronic rules for each specific type of cycloaddition. Here we demonstrate a strategy for combining the optimal features of these two chemical transformations into one simple sequence, to enable the modular, enantioselective, scalable and programmable preparation of useful building blocks, natural products and lead scaffolds for drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.