Approximately 30% of patients with Epstein-Barr virus (EBV)-positive advanced nasopharyngeal carcinoma (NPC) display chemoresistance to cisplatin-based regimens, but the underlying mechanisms are unclear. The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), a functional homologue of the tumor necrosis factor receptor family, contributes substantially to the oncogenic potential of EBV through the activation of multiple signaling pathways, and it is closely associated with a poorer prognosis for NPC. Recent studies show that EBV infection can induce the expression of many cellular miRNAs, including microRNA-21, a biomarker for chemoresistance. However, neither a link between LMP1 expression and miR-21 upregulation nor their cross talk in affecting chemoresistance to cisplatin have been reported. Here, we observed that stable LMP1-transformed NPC cells were less sensitive to cisplatin treatment based on their proliferation, colony formation, the IC50 value of cisplatin and the apoptosis index. Higher levels of miR-21 were found in EBV-carrying and LMP1-positive cell lines, suggesting that LMP1 may be linked to miR-21 upregulation. These data were confirmed by our results that exogenous LMP1 increased miR-21 in both transiently and stably LMP1-transfected cells, and the knock down of miR-21 substantially reversed the resistance of the NPC cells to cisplatin treatment. Moreover, the proapoptotic factors programmed cell death 4 (PDCD4) and Fas ligand (Fas-L), which were negatively regulated by miR-21, were found to play an important role in the program of LMP1-dependent cisplatin resistance. Finally, we demonstrated that LMP1 induced miR-21 expression primarily by modulating the PI3K/AKT/FOXO3a signaling pathway. Taken together, we revealed for the first time that viral LMP1 triggers the PI3K/Akt/FOXO3a pathway to induce human miR-21 expression, which subsequently decreases the expression of PDCD4 and Fas-L, and results in chemoresistance in NPC cells.
Background
With the rapid development of the high throughput detection techniques, tumor-related Omics data has become an important source for studying the mechanism of tumor progression including breast cancer, one of the major malignancies worldwide. A previous study has shown that the G2 and S phase-expressed-1 (GTSE1) can act as an oncogene in several human cancers. However, its functional roles in breast cancer remain elusive.
Method
In this study, we analyzed breast cancer data downloaded from The Cancer Genome Atlas (TCGA) databases and other online database including the Oncomine, bc-GenExMiner and PROGgeneV2 database to identify the molecules contributing to the progression of breast cancer. The GTSE1 expression levels were investigated using qRT-PCR, immunoblotting and IHC. The biological function of GTSE1 in the growth, migration and invasion of breast cancer was examined in MDA-MB-231, MDA-MB-468 and MCF7 cell lines. The in vitro cell proliferative, migratory and invasive abilities were evaluated by MTS, colony formation and transwell assay, respectively. The role of GTSE1 in the growth and metastasis of breast cancer were revealed by in vivo investigation using BALB/c nude mice.
Results
We showed that the expression level of GTSE1 was upregulated in breast cancer specimens and cell lines, especially in triple negative breast cancer (TNBC) and p53 mutated breast cancer cell lines. Importantly, high GTSE1 expression was positively correlated with histological grade and poor survival. We demonstrated that GTSE1 could promote breast cancer cell growth by activating the AKT pathway and enhance metastasis by regulating the Epithelial-Mesenchymal transition (EMT) pathway. Furthermore, it could cause multidrug resistance in breast cancer cells. Interestingly, we found that GTSE1 could regulate the p53 function to alter the cell cycle distribution dependent on the mutation state of p53.
Conclusion
Our results reveal that GTSE1 played a key role in the progression of breast cancer, indicating that GTSE1 could serve as a novel biomarker to aid in the assessment of the prognosis of breast cancer.
Electronic supplementary material
The online version of this article (10.1186/s13046-019-1157-4) contains supplementary material, which is available to authorized users.
BackgroundEpstein-Barr virus (EBV) is an etiological cause of many human lymphocytic and epithelial malignancies. EBV expresses different genes that are associated with three latency types. To date, as many as 44 EBV-encoded miRNA species have been found, but their comprehensive profiles in the three types of latent infection that are associated with various types of tumors are not well documented.MethodsIn the present study, we utilized poly (A)-tailed quantitative real-time RT-PCR in combination with microarray analysis to measure the relative abundances of viral miRNA species in a subset of representative lymphoid and epithelial tumor cells with various EBV latency types.ResultsOur findings showed that the miR-BHRF1 and miR-BART families were expressed differentially in a tissue- and latency type-dependent manner. Specifically, in nasopharyngeal carcinoma (NPC) tissues and the EBV-positive cell line C666-1, the miR-BART family accounted for more than 10% of all detected miRNAs, suggesting that these miRNAs have important roles in maintaining latent EBV infections and in driving NPC tumorigenesis. In addition, EBV miRNA-based clustering analysis clearly distinguished between the three distinct EBV latency types, and our results suggested that a switch from type I to type III latency might occur in the Daudi BL cell line.ConclusionsOur data provide a comprehensive profiling of the EBV miRNA transcriptome that is associated with specific tumor cells in the three types of latent EBV infection states. EBV miRNA species represent a cluster of non-encoding latency biomarkers that are differentially expressed in tumor cells and may help to distinguish between the different latency types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.