Long non-coding RNAs (lncRNAs) as a key group of non-coding RNAs have gained widely attention. Though lncRNAs have been functionally annotated and systematic explored in higher mammals, few are under systematical identification and annotation. Owing to the expression specificity, known lncRNAs expressed in embryonic brain tissues remain still limited. Considering a large number of lncRNAs are only transcribed in brain tissues, studies of lncRNAs in developmental brain are therefore of special interest. Here, publicly available RNA-sequencing (RNA-seq) data in embryonic brain are integrated to identify thousands of embryonic brain lncRNAs by a customized pipeline. A significant proportion of novel transcripts have not been annotated by available genomic resources. The putative embryonic brain lncRNAs are shorter in length, less spliced and show less conservation than known genes. The expression of putative lncRNAs is in one tenth on average of known coding genes, while comparable with known lncRNAs. From chromatin data, putative embryonic brain lncRNAs are associated with active chromatin marks, comparable with known lncRNAs. Embryonic brain expressed lncRNAs are also indicated to have expression though not evident in adult brain. Gene Ontology analysis of putative embryonic brain lncRNAs suggests that they are associated with brain development. The putative lncRNAs are shown to be related to possible cis-regulatory roles in imprinting even themselves are deemed to be imprinted lncRNAs. Re-analysis of one knockdown data suggests that four regulators are associated with lncRNAs. Taken together, the identification and systematic analysis of putative lncRNAs would provide novel insights into uncharacterized mouse non-coding regions and the relationships with mammalian embryonic brain development.
Genome-wide DNA "demethylation" in the zygote involves global TET3-mediated oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) in the paternal pronucleus. Asymmetrically enriched histone H3K9 methylation in the maternal pronucleus was suggested to protect the underlying DNA from 5mC conversion. We hypothesized that an H3K9 methyltransferase enzyme, either EHMT2 or SETDB1, must be expressed in the oocyte to specify the asymmetry of 5mC oxidation. To test these possibilities, we genetically deleted the catalytic domain of either EHMT2 or SETDB1 in growing oocytes and achieved significant reduction of global H3K9me2 or H3K9me3 levels, respectively, in the maternal pronucleus. We found that the asymmetry of global 5mC oxidation was significantly reduced in the zygotes that carried maternal mutation of either the Ehmt2 or Setdb1 genes. Whereas the levels of 5hmC, 5fC, and 5caC increased, 5mC levels decreased in the mutant maternal pronuclei. H3K9me3-rich rings around the nucleolar-like bodies retained 5mC in the maternal mutant zygotes, suggesting that the pericentromeric heterochromatin regions are protected from DNA demethylation independently of EHMT2 and SETDB1. We observed that the maternal pronuclei expanded in size in the mutant zygotes and contained a significantly increased number of nucleolar-like bodies compared with normal zygotes. These findings suggest that oocyte-derived EHMT2 and SETDB1 enzymes have roles in regulating 5mC oxidation and in the structural aspects of zygote development.maternal effect | 5-hydroxymethylcytosine | 5-methylcytosine | EHMT2 | STEDB1
Long intergenic non-coding RNAs (lincRNAs) as a key group of non-coding RNAs have gained substantial attention. Though lincRNAs have been systematically explored in various mouse tissues and cell lines, large-scale identification of lincRNAs in mouse pre-implantation embryonic development (PED) process has not be documented previously. Therefore, it is important to identify and characterize novel lincRNAs that may be involved in PED. In this paper, we performed transcriptome assembly based on published single-cell RNA-seq data during mouse PED and identified 4,438 putative lincRNAs. Combining these with Ensembl lincRNAs, we established a reference catalog of 5,808 transcribed lincRNAs in PED. We then systematically analyzed the lincRNAs in this reference catalog and revealed that the identified novel PED lincRNAs are generally comparable with known Ensembl lincRNAs in genomic aspects. In addition, the global expression patterns can be separated by zygote first cleavage division in clustering analysis and we further identified and analyzed differentially expressed lincRNAs involved in this process. The expression of lincRNAs involved in the process is negatively correlated with promoter methylation in trend. The identified lincRNAs involved in zygote first cleavage division could have important roles in mouse early embryonic development and need further functional studies. Altogether, a novel reference catalog of mouse PED lincRNAs is provided and characterized, which would be a valuable resource for further functional analyses and may help elucidate the pre-implantation regulatory mechanism.
MicroRNAs are small noncoding RNAs involved in various biological processes. We characterized the expression of miR-344-3p during mouse embryonic development. At E9.5-E10.5 and E15.5, in situ hybridization detected strong miR-344-3p signal in the central nervous system, including the cerebral cortex, hindbrain, cerebellum, thalamus, hindbrain, medulla oblongata, spinal cord, and dorsal root ganglia. Further, qRT-PCR analysis identified miR-344-3p expression at E15.5, with expression stably maintained in the brain from E12.5 to E18.5 before decreasing to relatively low levels postnatally. We also analyzed miR-344-3p expression using immunofluorescence in situ hybridization at E18.5 and within the adult brain. miR-344-3p signal was mainly detected in cortical regions surrounding the ventricular system, choroid plexus, glomerular layer of the olfactory bulb, and granular cell layer of the cerebellar cortex. Altogether, our results indicate miR-344-3p may play an important role in morphogenesis, nervous system development in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.