The 360-MHz 1H NMR spectra of bufotenin and psilocin were obtained, both as the free bases in CDCl3 and as protonated salts in D2O. Coupling constants for the side-chain methylenes were derived using the LAOCN3 program. These time-averaged coupling constants indicate that the trans and gauche rotamers of both compounds have about equal energy in D2O. There is a slight excess of the trans rotamer of bufotenin in CDCl3. For psilocin, in contrast, the gauche form is highly favored in CDCl3. The magnitude of this stabilization was estimated at about 1 kcal/mol using rotamer populations and free energy of transfer from published partitioning studies. It is suggested that this could result from a very weak hydrogen bond. On the other hand, the difference in partitioning between bufotenin and psilocin, which seems to be a major determinant of biological activity, is largely due to a difference in the basicity of the two compounds. The pKa values for the amino group of psilocin and bufotenin were determined to be 8.47 and 9.67, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.