Junior, IF. Combined training (aerobic plus strength) potentiates a reduction in body fat but demonstrates no difference on the lipid profile in postmenopausal women when compared with aerobic training with a similar training load. J Strength Cond Res 30(1): 226-234, 2016-The aim of this study was to verify the effects of aerobic and combined training on the body composition and lipid profile of obese postmenopausal women and to analyze which of these models is more effective after equalizing the training load. Sixty-five postmenopausal women (age = 61.0 6 6.3 years) were divided into 3 groups: aerobic training (AT, n = 15), combined training (CT [strength + aerobic], n = 32), and control group (CG, n = 18). Their body composition upper body fat (TF), fat mass (FM), percentage of FM, and fat-free mass (FFM) were estimated by dual-energy x-ray absorptiometry. The lipid profile, total cholesterol, highdensity lipoprotein (HDL) cholesterol, and low-density lipoprotein cholesterol were assessed. There was a statistically significant difference in the TF (AT = 24.4%, CT = 24.4%, and CG = 1.0%, p = 0.001) and FFM (AT = 1.7%, CT = 2.6%, and CG = 21.4%, p = 0.0001) between the experimental and the control groups. Regarding the percentage of body fat, there was a statistically significant difference only between the CT and CG groups (AT = 22.8%, CT = 23.9%, and CG = 0.31%; p = 0.004). When training loads were equalized, the aerobic and combined training decreased core fat and increased FFM, but only the combined training potentiated a reduction in percentage of body fat in obese postmenopausal women after the training program. High-density lipoprotein-c levels increased in the combined group, and the chol/HDL ratio (atherogenic index) decreased in the aerobic group; however, there were no significant differences between the intervention programs. Taken together, both the exercise training programs were effective for improving body composition and inducing an antiatherogenic status.
Dyslipidemia (high concentrations of LDL-c and low concentrations of HDL-c) is a major cause of cardiovascular events, which are the leading cause of death in the world. On the other hand, nutrition and regular exercise can be an interesting strategy to modulate lipid profile, acting as prevention or treatment, inhibiting the risk of diseases due to its anti-inflammatory and anti-atherogenic characteristics. Additionally, the possibility of controlling different training variables, such as type, intensity and recovery interval, can be used to maximize the benefits of exercise in promoting cardiovascular health. However, the mechanisms by which exercise and nutrients act in the regulation of cholesterol and its fractions, such as reverse cholesterol transport, receptors and transcription factors involved, such as PPARs and their role related to exercise, deserve further discussion. Therefore, the objective of this review is to debate about non-medical approaches to increase HDL-c, such as nutritional and training strategies, and to discuss the central mechanisms involved in the modulation of lipid profile during exercise, as well as that can be controlled by physical trainers or sports specialists in attempt to maximize the benefits promoted by exercise. The search for papers was performed in the databases: Medline (Pubmed), Science Direct, Scopus, Sport Discus, Web of Science, Scielo and Lilacs until February 2016.
Background: Elevated screen time has been associated with addictive behaviors, such as alcohol and sugar intake and smoking. Considering the substantial increase in screen time caused by social isolation policies, this study aimed to analyze the association of increased screen time in different devices during the COVID-19 pandemic with consumption and increased desire of alcohol, smoking, and sweetened foods in adults.Methods: A sample of 1,897 adults with a mean age of 37.9 (13.3) years was assessed by an online survey, being composed by 58% of women. Participants were asked whether screen time in television, cell phone, and computer increased during the pandemic, as well as how much time is spent in each device. Closed questions assessed the frequency of alcohol and sweetened food consumption, smoking, and an increased desire to drink and smoke during the pandemic. Educational level, age, sex, feeling of stress, anxiety, depression, and use of a screen device for physical activity were covariates. Binary logistic regression models considered adjustment for covariates and for mutual habits.Results: Increased television time was associated with increased desire to drink (OR = 1.46, 95% CI: 1.12; 1.89) and increased sweetened food consumption (OR = 1.53, 95% CI: 1.18; 1.99), while an increase in computer use was negatively associated with consumption of alcohol (OR = 0.68, 95% CI: 0.53; 0.86) and sweetened foods (OR = 0.78, 95% CI: 0.62; 0.98). Increased cell phone time was associated with increased sweetened food consumption during the pandemic (OR = 1.78, 95% CI: 1.18; 2.67). Participants with increased time in the three devices were less likely to consume sweetened foods for ≥5 days per week (OR = 0.63, 95% CI: 0.39; 0.99) but were twice as likely to have sweetened food consumption increased during pandemic (OR = 2.04, 95% CI: 1.07; 3.88).Conclusion: Increased screen time was differently associated with consumption and desire for alcohol and sweets according to screen devices. Increased time in television and cell phones need to be considered for further investigations of behavioral impairments caused by the pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.