Self-assembly of block copolymers confined in cylindrical nanopores is studied systematically using a simulated annealing technique. For diblock copolymers which form two-dimensional hexagonally packed cylinders with period L0 in the bulk, novel structures such as helices and stacked toroids spontaneously form inside the cylindrical pores. These confinement-induced morphologies have no counterpart in the bulk system and they depend on the pore diameter (D) and the surface-polymer interactions, reflecting the importance of structural frustration and interfacial interactions. On tightening the degree of confinement, transitions from helices to toroids to spheres are observed. Mechanisms of the morphological transitions can be understood based on the degree of structural frustration parametrized by the ratio D/L0.
Self-assembly of AB diblock copolymers confined in cylindrical nanopores is studied using a simulated annealing technique. The pore diameter and surface preference are systematically varied to examine their effects on the self-assembled morphologies and the chain conformations. For bulk lamella-forming and cylinder-forming diblock copolymers, novel structures such as helices and concentric (perforated) lamellae spontaneously form when the copolymers are confined in cylindrical pores. The observed equilibrium morphologies are compared with that obtained from experiments, theory, and other simulations. A simple model is proposed for symmetric diblock copolymers, which gives a reasonable description of the layer thickness for the concentric lamellae. It is found that chains near the pore surfaces are compressed relative to the bulk chains, which can be attributed to the existence of the surfaces. The dependence of the chain conformation on the degree of confinement and strength of the surface preference are reasonably explained. The energetics is discussed qualitatively and used to account for the appearance of the complex phase behavior observed for certain intermediate conditions.
Bio-inspired molecular design and synthesis of high-performance and recyclable cross-linked polymers is reported. Reversible cross-links between hard segments are incorporated into linear segmented polyurethane via Diels-Alder reaction between maleimide pendant group and furan cross-linker. The materials form hierarchical structure and exhibit excellent properties with high stiffness, strength and toughness, and can be easily thermally reshaped and re-mended.
The structures and local environments of boron species in B-doped and (B, N)-codoped TiO2 photocatalysts have been investigated by solid-state 11B NMR spectroscopy in conjunction with density functional theory (DFT) calculations. Up to seven different boron sites were identified in the B-doped anatase TiO2, which may be classified into three categories, including interstitial, bulk BO3/2 polymer, and surface boron species, and has been supported by results obtained from FT-IR and XPS spectroscopy as well as from DFT calculations. Two types of interstitial borons, namely the tricoordinated (T*)- and pseudotetrahedral-coordinated (Q*) borons, were observed in addition to the two types of bulk BO3/2 polymer and three types of surface B, in good agreement with experimental data. Further density of state analyses revealed that, compared to undoped TiO2, the T* species in boron-doped TiO2 are solely responsible for the observed increase in energy band gap, whereas the presence of Q* species tend to lead to a decrease in band gap and hence are more favorable for the absorption in the visible-light region. In comparison with B- and N-doped TiO2, (B, N)-codoped TiO2 tends to exhibit a much higher visible-light photocatalytic activity for the oxidation of rhodamine B. Accordingly, a photochemical mechanism of the (B, N)-codoped TiO2 under visible-light irradiation is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.