Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.
Fungi play vital roles in the decomposition of deadwood due to their secretion of various enzymes that break down plant cell-wall complexes. The compositions of woodinhabiting fungal (WIF) communities change over the course of the decomposition process as the remaining mass of wood decreases and both abiotic and biotic conditions of the wood significantly change. It is currently not resolved which substrate-related factors govern these changes in WIF communities and whether such changes influence the deadwood decomposition rate. Here we report a study on fungal richness and community structure in deadwood of Norway spruce and European beech in temperate forest ecosystems using 454 pyrosequencing. Our aims were to disentangle the factors that correspond to WIF community composition and to investigate the links between fungal richness, taxonomically-resolved fungal identity, and microbial-mediated ecosystem functions and processes by analyzing physico-chemical wood properties, lignin-modifying enzyme activities and wood decomposition rates. Unlike fungal richness, we found significant differences in community structure between deadwood of different tree species. The composition of WIF communities was related to the physico-chemical properties of the deadwood substrates. Decomposition rates and the activities of ligninmodifying enzymes were controlled by the succession of the fungal communities and competition scenarios rather than fungal OTU richness. Our results provide further insights into links between fungal community structure and microbialmediated ecosystem functions and processes.
1. For managed temperate forests, conservationists and policymakers favour fine-grained uneven-aged management over more traditional coarse-grained even-aged management, based on the assumption that within-stand habitat heterogeneity enhances biodiversity. There is, however, little empirical evidence to support this assumption. We investigated for the first time how differently grained forest management systems affect the biodiversity of multiple above- and below-ground taxa across spatial scales. 2. We sampled 15 taxa of animals, plants, fungi and bacteria within the largest contiguous beech forest landscape of Germany and classified them into functional groups. Selected forest stands have been managed for more than a century at different spatial grains. The even-aged (coarse-grained management) and uneven-aged (fine-grained) forests are comparable in spatial arrangement, climate and soil conditions. These were compared to forests of a nearby national park that have been unmanaged for at least 20 years. We used diversity accumulation curves to compare γ-diversity for Hill-numbers 0D (species richness), 1D (Shannon diversity) and 2D (Simpson diversity) between the management systems. Beta diversity was quantified as multiple-site dissimilarity. 3. Gamma diversity was higher in even-aged than in uneven-aged forests for at least one of the three Hillnumbers for six taxa (up to 77%), while eight showed no difference. Only bacteria showed the opposite pattern. Higher γ-diversity in even-aged forests was also found for forest specialists and saproxylic beetles. 4. Between-stand β-diversity was higher in even-aged than in uneven-aged forests for one third (all species) and half (forest specialists) of all taxa, driven by environmental heterogeneity between age-classes, while α-diversity showed no directional response across taxa or for forest specialists. 5. Synthesis and applications. Comparing even-aged and uneven-aged forest management in Central European beech forests, our results show that a mosaic of different age-classes is more important for regional biodiversity than high within-stand heterogeneity. We suggest reconsidering the current trend of replacing even-aged management in temperate forests. Instead, the variability of stages and stand structures should be increased to promote landscape scale biodiversity
Trade-offs and synergies in the supply of forest ecosystem services are common but the drivers of these relationships are poorly understood. To guide management that seeks to promote multiple services, we investigated the relationships between 12 stand-level forest attributes, including structure, composition, heterogeneity and plant diversity, plus 4 environmental factors, and proxies for 14 ecosystem services in 150 temperate forest plots. Our results show that forest attributes are the best predictors of most ecosystem services and are also good predictors of several synergies and trade-offs between services. Environmental factors also play an important role, mostly in combination with forest attributes. Our study suggests that managing forests to increase structural heterogeneity, maintain large trees, and canopy gaps would promote the supply of multiple ecosystem services. These results highlight the potential for forest management to encourage multifunctional forests and suggest that a coordinated landscape-scale strategy could help to mitigate trade-offs in human-dominated landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.