Electrochemical determination of in vivo dopamine (DA) using implantable microelectrodes is essential for monitoring the DA depletion of an animal model of Parkinson's disease (PD), but faces substantial interference from ascorbic acid (AA) in the brain area due to similar electroactive characteristics. This study utilizes gold nanoparticles (Au-NPs) and self-assembled monolayers (SAMs) to modify platinum microelectrodes for improving sensitivity and specificity to DA and alleviating AA interference. With appropriate choice of ω-mercaptoalkane carboxylic acid chain length, our results show that a platinum microelectrode coated with Au-NPs and 3-mercaptopropionic acid (MPA) has approximately an 881-fold specificity to AA. During amperometric measurements, Au-NP/MPA reveals that the responsive current is linearly dependent on DA over the range of 0.01-5 μM with a correlation coefficient of 0.99 and the sensitivity is 2.7-fold that of a conventional Nafion-coated electrode. Other important features observed include fast response time (below 2 s), resistance to albumin adhesion and low detection limit (7 nM) at a signal to noise ratio of 3. Feasibility of in vivo DA recording with the modified microelectrodes is verified by real-time monitoring of electrically stimulated DA release in the striatum of anesthetized rats with various stimulation parameters and administration of a DA uptake inhibitor. The developed microelectrodes present an attractive alternative to the traditional options for continuous electrochemical in vivo DA monitoring.
Dopaminergic PC12 cells can synthesize and release dopamine, providing a good cellular model for investigating dopamine regulation. Optogenetic stimulation of channelrhodopsin-2 provides high spatial and temporal precision for selective stimulation as a powerful neuromodulation tool for neuroscience studies. The aim of this study is to measure dopamine release from dopaminergic PC12 cells under optogenetic stimulation using electrochemical recording of self-assembled monolayers modified microelectrode with amperometric measurement in real time. The activation of PC12 cells under various optogenetic stimulation schemes are characterized by measuring single-cell Ca2+ imaging. After 10 seconds of optogenetic stimulation, the evoked intracellular Ca2+ level and dopamine current of channelrhodopsin-2-transfected PC12 cells were 1.6- and 3.5-fold higher than those of the control cells. The optogenetic stimulation effects on Ca2+ influx and dopamine release were 81% and 63% inhibition by using a Ca2+ channel antagonist Nifedipine. The results indicate that optogenetic stimulation can evoke voltage-gated Ca2+ channel-dependent dopamine exocytosis from PC12 cells in a cell specific, temporally precise and dose-dependent manner. This proposed dopamine recording system can be developed to be a good cell model for dopamine regulation and drug screening in vitro, or dopaminergic cell implantation therapy in vivo using optogenetic stimulation in a precise and convenient way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.