Several versions of convolutional neural network (CNN) were developed to classify hyperspectral images (HSIs) of agricultural lands, including 1D-CNN with pixelwise spectral data, 1D-CNN with selected bands, 1D-CNN with spectral-spatial features and 2D-CNN with principal components. The HSI data of a crop agriculture in Salinas Valley and a mixed vegetation agriculture in Indian Pines were used to compare the performance of these CNN algorithms. The highest overall accuracy on these two cases are 99.8% and 98.1%, respectively, achieved by applying 1D-CNN with augmented input vectors, which contain both spectral and spatial features embedded in the HSI data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.