Dengue viruses (DENVs) generally induce apoptosis in mammalian cells but cause only minor damage in mosquito cells. To find genes involved in determining the cell fate, datasets derived from expressed sequence tags (ESTs) of C6/36 cells with and without infection were established. Of overexpressed genes found in infected dataset, chaperone proteins were validated significantly upregulated in C6/36 cells at 24 hpi. It suggests that DENV-2 in mosquito cells activates the unfolded protein response to cope with endoplasmic reticular stress. Changes in the mitochondrial membrane potential and generation of superoxide provided further evidence that DENV-2 induces oxidative stress in both C6/36 and BHK-21 cells. Significant elevation of glutathione S-transferase (GST) activity was shown in infected C6/36, but not BHK-21, cells, while suppression of GST produced superoxide at 36 hpi and increased the cell death rate at 48 hpi. This indicates that mosquito cells protect themselves against viral infection through antioxidant defenses.
Cytopathic effects (CPEs) in mosquito cells are generally trivial compared to those that occur in mammalian cells, which usually end up undergoing apoptosis during dengue virus (DENV) infection. However, oxidative stress was detected in both types of infected cells. Despite this, the survival of mosquito cells benefits from the upregulation of genes related to antioxidant defense, such as glutathione S transferase (GST). A second defense system, i.e., consisting of antiapoptotic effects, was also shown to play a role in protecting mosquito cells against DENV infection. This system is regulated by an inhibitor of apoptosis (IAP) that is an upstream regulator of caspases-9 and -3. DENV-infected C6/36 cells with double knockdown of GST and the IAP showed a synergistic effect on activation of these two caspases, causing a higher rate of apoptosis (>20%) than those with knockdown of each single gene (∼10%). It seems that the IAP acts as a second line of defense with an additional effect on the survival of mosquito cells with DENV infection. Compared to mammalian cells, residual hydrogen peroxide in DENV-infected C6/36 cells may signal for upregulation of the IAP. This novel finding sheds light on virus/cell interactions and their coevolution that may elucidate how mosquitoes can be a vector of DENV and probably most other arboviruses in nature.
Japanese encephalitis virus (JEV), one of encephalitic flaviviruses, is naturally transmitted by mosquitoes. During infection, JEV generally enters host cells via receptor-mediated clathrindependent endocytosis that requires the 70 kDa heat-shock protein (Hsp70). Heat-shock cognate protein 70 (Hsc70) is one member of the Hsp70 family and is constitutively expressed; thus, it may be expressed under physiological conditions. In C6/36 cells, Hsc70 is upregulated in response to JEV infection. Since Hsc70 shows no relationship with viruses attaching to the cell surface, it probably does not serve as the receptor according to our results in the present study. In contrast, Hsc70 is evidently associated with virus penetration into the cell and resultant acidification of intracellular vesicles. It suggests that Hsc70 is highly involved in clathrin-mediated endocytosis, particularly at the late stage of viral entry into host cells. Furthermore, we found that Hsc70 is composed of at least three isoforms, including B, C and D; of these, isoform D helps JEV to penetrate C6/36 cells via clathrin-mediated endocytosis. This study provides relevant evidence that sheds light on the regulatory mechanisms of JEV infection in host cells, especially on the process of clathrin-mediated endocytosis.
BackgroundWe evaluated the impact of temperature and Wolbachia infection on vector competence of the local Aedes aegypti and Ae. albopictus populations of southern Taiwan in the laboratory.ResultsAfter oral infection with dengue serotype 1 virus (DENV-1), female mosquitoes were incubated at temperatures of 10, 16, 22, 28 and 34 °C. Subsequently, salivary gland, head, and thorax-abdomen samples were analyzed for their virus titer at 0, 5, 10, 15, 20, 25 and 30 days post-infection (dpi) by real-time RT-PCR. The results showed that Ae. aegypti survived significantly longer and that dengue viral genome levels in the thorax-abdomen (103.25 ± 0.53–104.09 ± 0.71 PFU equivalents/ml) and salivary gland samples (102.67 ± 0.33–103.89 ± 0.58 PFU equivalents/ml) were significantly higher at high temperature (28–34 °C). The survival of Ae. albopictus was significantly better at 16 or 28 °C, but the virus titers from thorax-abdomen (100.70–102.39 ± 1.31 PFU equivalents/ml) and salivary gland samples (100.12 ± 0.05–101.51 ± 0.31 PFU equivalents/ml) were significantly higher at 22–28 °C. Within viable temperature ranges, the viruses were detectable after 10 dpi in salivary glands and head tissues in Ae. aegypti and after 5–10 dpi in Ae. albopictus. Vector competence was measured in Ae. albopictus with and without Wolbachia at 28 °C. Wolbachia-infected mosquitoes survived significantly better and carried lower virus titers than Wolbachia-free mosquitoes. Wolbachia coinfections (92.8–97.2%) with wAlbA and wAlbB strains were commonly found in a wild population of Ae. albopictus.ConclusionsIn southern Taiwan, Ae. aegypti is the main vector of dengue and Ae. albopictus has a non-significant role in the transmission of dengue virus due to the high prevalence of Wolbachia infection in the local mosquito population of southern Taiwan.Electronic supplementary materialThe online version of this article (10.1186/s13071-017-2493-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.