Cardiac fibroblasts are crucial in pathophysiology of the myocardium whereby their aberrant proliferation has significant impact on cardiac function. Hydrogen sulphide (H2S) is a gaseous modulator of potassium channels on cardiomyocytes and has been reported to attenuate cardiac fibrosis. Yet, the mechanism of H2S in modulating proliferation of cardiac fibroblasts remains poorly understood. We hypothesized that H2S inhibits proliferative response of atrial fibroblasts through modulation of potassium channels. Biophysical property of potassium channels in human atrial fibroblasts was examined by whole-cell patch clamp technique and their cellular proliferation in response to H2S was assessed by BrdU assay. Large conductance Ca2+-activated K+ current (BKCa), transient outward K+ current (Ito) and inwardly rectifying K+ current (IKir) were found in human atrial fibroblasts. Current density of BKCa (IC50 = 69.4 μM; n = 6), Ito (IC50 = 55.1 μM; n = 6) and IKir (IC50 = 78.9 μM; n = 6) was significantly decreased (P < 0.05) by acute exposure to NaHS (a H2S donor) in atrial fibroblasts. Furthermore, NaHS (100–500 μM) inhibited fibroblast proliferation induced by transforming growth factor-β1 (TGF-β1; 1 ng/ml), Ang II (100 nM) or 20% FBS. Pre-conditioning of fibroblasts with NaHS decreased basal expression of Kv4.3 (encode Ito), but not KCa1.1 (encode BKCa) and Kir2.1 (encode IKir). Furthermore, H2S significantly attenuated TGF-β1–stimulated Kv4.3 and α-smooth muscle actin expression, which coincided with its inhibition of TGF-β–induced myofibroblast transformation. Our results show that H2S attenuates atrial fibroblast proliferation via suppression of K+ channel activity and moderates their differentiation towards myofibroblasts.
Telocytes (TCs) with exceptionally long cellular processes of telopodes have been described in human epicardium to act as structural supporting cells in the heart. We examined myocardial chamber-specific TCs identified in atrial and ventricular fibroblast culture using immunocytochemistry and studied their electrophysiological property by whole-cell patch clamp. Atrial and ventricular TCs with extended telopodes and alternating podoms and podomers that expressed CD34, c-Kit and PDGFR-β were identified. These cells expressed large conductance Ca2+-activated K+ current (BKCa) and inwardly rectifying K+ current (IKir), but not transient outward K+ current (Ito) and ATP-sensitive potassium current (KATP). The active channels were functionally competent with demonstrated modulatory response to H2S and transforming growth factor (TGF)-β1 whereby H2S significantly inhibited the stimulatory effect of TGF-β1 on current density of both BKCa and IKir. Furthermore, H2S attenuated TGF-β1-stimulated KCa1.1/Kv1.1 (encode BKCa) and Kir2.1 (encode IKir) expression in TCs. Our results show that functionally competent K+ channels are present in human atrial and ventricular TCs and their modulation may have significant implications in myocardial physiopathology.
Therapeutic temperature management (TTM) was strongly recommended by the 2015 International Liaison Committee on Resuscitation as a component of post-resuscitation care. It has been known to be effective in improving the survival rate and neurologic functional outcome of patients after cardiac arrest. In an effort to increase local adoption of TTM as a standard of post-resuscitation care, this paper discusses and makes recommendations on the treatment for local providers.
Transvenous implantable cardioverter defibrillators are a type of implantable cardiac device. They are effective at reducing total and arrhythmic mortality in patients at risk of sudden cardiac death. Subcutaneous implantable cardioverter defibrillators (S-ICDs) are a new alternative that avoids the disadvantages of transvenous lead placement. In this case series, we report on the initial feasibility and safety of S-ICD implantation in Singapore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.