(2019) A power-splitting relaying protocol for wireless energy harvesting and information processing in NOMA systems. IET Communications, 13 (14). pp. 2132-2140.
In this paper, we investigate the performance of non-orthogonal multiple access (NOMA)-based full-duplex Internet-of-Things (IoT) relay systems with simultaneous wireless information and power transfer (SWIPT) over Nakagami-m fading channels to improve the performance of a cell-edge user under perfect and imperfect successive interference cancellation (SIC). Two scenarios, i.e., direct and non-direct links, between the source node and cell-edge user are examined. The exact closed-form analytical and approximate expressions for the outage probability, system throughput, energy efficiency, and ergodic capacities are derived and validated via Monte Carlo simulations to characterize the proposed system performance. To further improve the system performance, we also provide a low-complexity algorithm to maximize the system throughput over-optimizing the time-switching factor. The results show that our proposed NOMA system can achieve superior performance compared to its orthogonal multiple access (OMA) counterpart under perfect SIC and with a low-to-medium signal-to-noise ratio under imperfect SIC, according to the level of residual self-interference and the quality of links.
This paper investigates performance of simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-enabled multiple two-way full-duplex device-to-device (D2D) communication systems over Rayleigh fading channels under optimal and uncertain phase shift alignments. We derive closed-form expressions for outage probability (OP), sum throughput, ergodic capacity (EC) and energy efficiency. To gain insights, we quantify and reveal some useful guidelines for the performance behavior of the OP and the EC, such as diversity order and ergodic slope from high transmit power configuration. In addition, some critical points also deduced for the sum throughput and the system energy efficiency. Moreover, the impacts of the transmit power configurations, RIS deployments, allocating target data rate transmission, and the number of user deployments on the system performance are examined. Finally, we present some extensive simulations using Monte-Carlo method to corroborate the accuracy of the theoretical analysis.INDEX TERMS Simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs), device-to-device (D2D) communication, full-duplex, two-way communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.