A directional sensor network is different from conventional wireless sensor networks. It uses directional sensors instead of omnidirectional ones in the network for different applications, and the effective sensing range is characterized by directionality and size-specific sensing angle. Therefore, conditions of directional sensor networks are dissimilar to those of generic wireless sensor networks for researches, especially on the sensing coverage. This study proposed a distributed approach to enhance the overall field coverage by utilizing mobile and direction-rotatable sensors in a directional sensor network. The algorithm makes sensors self-redeploy to the new location and new direction without global information by utilizing the features of geometrical Voronoi cells. Simulations were used to evaluate and prove the effectiveness of the proposed algorithm. The results show that the approach contributes to significant field coverage improvement in directional sensor networks.
In recent years, mobile device-assisted clinical education has become popular among nursing school students. The introduction of mobile devices saves manpower and reduces errors while enhancing nursing students' professional knowledge and skills. To respond to the demands of various learning strategies and to maintain existing systems of education, the concept of Cloud Learning is gradually being introduced to instructional environments. Cloud computing facilitates learning that is personalized, diverse, and virtual. This study involved assessing the advantages of mobile devices and Cloud Learning in a public health practice course, in which Google+ was used as the learning platform, integrating various application tools. Users could save and access data by using any wireless Internet device. The platform was student centered and based on resource sharing and collaborative learning. With the assistance of highly flexible and convenient technology, certain obstacles in traditional practice training can be resolved. Our findings showed that the students who adopted Google+ were learned more effectively compared with those who were limited to traditional learning systems. Most students and the nurse educator expressed a positive attitude toward and were satisfied with the innovative learning method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.