We use the ultrasonic transmission method to measure P-, SH-, and SV-wave velocities for Chelmsford Granite, Chicopee Shale, and Berea Sandstone in different directions up to 1000 bars confining pressure. The velocity measurements indicate that these three rocks are elastically anisotropic. The stiffness constants, dynamic Young's moduli, dynamic Poisson's ratios, and dynamic bulk moduli of these three rocks were also calculated. These elastic constants, together with velocity measurements, suggest that: (1) Elastic anisotropy is due to the combined effects of pores/cracks and mineral grain orientation. (2) Elastic anisotropy decreases with increasing confining pressure. The residual anisotropy at higher confining pressure is due to mineral grain orientation.
In this study, we test geophysical ray tomography and geophysical diffraction tomography by scaled model ultrasonics experiments. First, we compare the performance of these two methods under limited view‐angle conditions. Second, we compare the adaptabilities of these two methods to objects of various sizes and acoustic properties. Finally, for diffraction tomography, we compare the Born and Rytov approximations based on the induced image distortion by using these two approximation methods. Our experimental results indicate the following: (1) When the scattered field can be obtained, geophysical diffraction tomography is in general superior to ray tomography because diffraction tomography is less sensitive to the limited view‐angle problem and can image small objects of size comparable to a wavelength. (2) The advantage of using ray tomography is that reconstruction can be done using the first arrivals only, the most easily measurable quantity; and there is no restriction on the properties of the object being imaged. (3) For geophysical diffraction tomography, the Rytov approximation is valid over a wider frequency range than the Born approximation in the cross‐borehole experiment. In the VSP and the surface reflection tomography experiments, no substantial difference between the Born and Rytov approximations is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.