Due to the non-polar nature and low wettability of carbon fibers (CFs), the interfacial adhesion between CFs and the polyetheretherketone (PEEK) matrix is poor, and this has negative effects on the mechanical properties of CF/PEEK composites. In this work, we established a modification method to improve the interface between CFs and PEEK based chemical grafting of aminated polyetheretherketone (PEEK-NH2) on CFs to create an interfacial layer which has competency with the PEEK matrix. The changed chemical composition, surface morphology, surface energy, and interlaminar shear strength were investigated. After grafting, the interlaminar shear strength (ILSS) was improved by 33.4% due to the covalent bonds in the interface region, as well as having good compatibility between the interface modifier and PEEK. Finally, Dynamic Mechanical Analysis (DMA) and Scanning Electron Microscopy (SEM) observation also confirmed that the properties of the modified CF/PEEK composites interface were enhanced. This work is, therefore, a beneficial approach towards enhancing the mechanical properties of thermoplastic composites by controlling the interface between CFs and the PEEK matrix.
In recent decades, natural-fiber-reinforced poly (lactic acid) (PLA) composites have received a great deal of attention. In this study, biocomposites of poly (lactic acid) and abutilon fibers are prepared by using melt blending and an extruder. The effects of fiber additions on rheological, thermomechanical, thermal, and morphological properties are investigated using a rheometer, dynamic mechanical analysis (DMA), differential scanning calorimeter (DSC), TGA, and SEM, respectively. The DSC results indicate that the fibers acted as a nucleating agent, which led to enhancing the crystallization of PLA. The results also reveal that the thermal stability of PLA was improved by abutilon fibers. Moreover, higher values of storage modulus are observed, which are attributed to strong interfacial adhesion. In addition, thetan delta isreduced upon the addition of fiber content into the PLA matrix, which restricts the mobility of PLA polymer molecules in the presence of the fibers. The improvement of the properties and energy absorption capabilities of such biocomposites signifies the great potential of abutilon fibers as reinforcement in green composites.
Recently, natural fibers have become attractive materials to engineers, scientists, and researchers as an alternative reinforcement for biocomposites. In this study, polylactic acid/abutilon natural straw biocomposites with various abutilon straw weight fractions were prepared by melt blending. The differential scanning calorimetric (DSC) results showed a significant influence of the abutilon straw on the melting behavior of PLA, even at the low abutilon straw contents. The dynamic mechanical analysis demonstrated that the storage modulus, as well as tan delta of the biocomposites, increased when the abutilon straw content increases, which indicates better interaction between abutilon natural straw and PLA. The incorporation of abutilon straw into biocomposites provided favorable changes in rheology related to the matrix. SEM observation revealed good dispersion of the abutilon straw in PLA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.