The worldwide COVID-19 pandemic has led to an attention on the usage of personal protective face masks. However, the longevity and safety of the commercial face masks are limited due to the charge dissipation of the electret meltblown nonwovens, which are dominate in the face mask filters. Herein, we design a type of multi-layer structured nonwovens using meltblowing and electrospinning technologies. The complex nonwovens involving meltblown and electrospun fibers are designed to possess multilevel fiber diameters and pore sizes. The micro/nanofibers with porous and wrinkled surface morphologies can well capture particulate matters (PMs), and the multilevel pore sizes contribute to low air resistance under high filtration efficiency. Airflow field simulation was carried out to understand the pressure distribution within the nonwovens in the filtration process. Meanwhile, by adding Ag nanoparticles (AgNPs) as additives, the nonwovens exhibit excellent antibacterial performance. The resultant nonwovens exhibit filtration efficiency of 99.1% for PM
0.3
and low pressure drop of 105 Pa under the 10.67 cm/s inlet air velocity, and antibacterial rate of > 99.99% for
Escherichia coli
. These performances and functions make the designed complex nonwovens a promising filter core for face masks.
Electronic Supplementary Material
Supplementary material (Fig. S1. The filtration efficiencies of a brand of surgical mask changes with the storage time under the condition of 100% humidity. Fig. S2. The FE-SEM images of the fibers after blocking PMs. Fig. S3. Illustration of 3D structure models of the nonwovens. Fig. S4. Diameter distribution of AgNPs. Table S1. The structure parameters and filtration performances of the PP-M fibers with and without pores and wrinkles. Table S2. Filtration performance of PP-M/PLA-M/PLA-N nonwovens and commercial face masks. Table S3. The structural parameters for the nonwovens. Table S4. The filtration efficiencies and pressure drops of the PP, PE spunbonded nonwovens, and PP-M/PLA-M/PLA-N@AgNPs nonwovens) is available in the online version of this article at 10.1007/s12274-022-4350-2.
A kind of biomimetic fibers of helical structures at nanoscale has attracted increasing interest. In this study, a novel co-electrospinning setup with a designed flat spinneret, used for the fabrication of helical nanofibers, is reported in this study. Poly (m-phenylene isophthalamide) (Nomex) and Thermoplastic polyurethane (TPU) are chosen as the two components in coelectrospinning. To display the efficiency for producing helical fibers, a generally used core-shell needle spinneret is used for comparison. The effect of the uniformity of electric field distribution created by these two types of spinnerets on the jet motion and the resultant helical fibers is developed, with systematical simulation and experimental research. The results showed that the co-electrospinning system with the newly designed flat spinneret can produce helical nanofibers efficiently. Compared with the needle spinneret, the flat spinneret created more uniform electric field, leading to better morphology and structure of the resultant helical fibers. In addition, an approach to achieve the scale-up of this coelectrospinning system is developed. This novel design is expected to provide a promising method to fabricate nanofiber materials with helical structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.