1 TRPM8 (CMR1) is a Ca 2 þ -permeable channel, which can be activated by low temperatures, menthol, eucalyptol and icilin. It belongs to the transient receptor potential (TRP) family, and therefore is related to vanilloid receptor type-1 (VR1, TRPV1). We tested whether substances which are structurally related to menthol, or which produce a cooling sensation, could activate TRPM8, and compared the responses of TRPM8 and VR1 to these ligands. 2 The effects of 70 odorants and menthol-related substances on recombinant mouse TRPM8 (mTRPM8), expressed in HEK293 cells, were examined using a FLIPR s assay. In all, 10 substances (linalool, geraniol, hydroxycitronellal, WS-3, WS-23, FrescolatMGA, FrescolatML, PMD38, CoolactP and Cooling Agent 10) were found to be agonists. 3 The EC 50 values of the agonists defined their relative potencies: icilin (0.270.1 mM)4FrescolatML (3.371.5 mM) 4 WS-3 (3.771.7 mM) (À)menthol (4.171.3 mM) frescolatMAG (4.871.1 mM) 4 cooling agent 10 (672.2 mM) (þ )menthol (14.471.3 mM) 4 PMD38 (3171.1 mM) 4 WS-23 (4477.3 mM) 4 Coolact P (66720 mM) 4 geraniol (5.971.6 mM) 4 linalool (6.772.0 mM) 4 eucalyptol (7.772.0 mM) 4 hydroxycitronellal (19.672.2 mM). 4 Known VR1 antagonists (BCTC, thio-BCTC and capsazepine) were also able to block the response of TRPM8 to menthol (IC 50 : 0.871.0, 3.571.1 and 1871.1 mM, respectively). 5 The Ca 2 þ response of hVR1-transfected HEK293 cells to the endogenous VR1 agonist Narachidonoyl-dopamine was potentiated by low pH. In contrast, menthol-and icilin-activated TRPM8 currents were suppressed by low pH. 6 In conclusion, in the present study, we identified 10 new agonists and three antagonists of TRPM8. We found that, in contrast to VR1, TRPM8 is inhibited rather than potentiated by protons.
The influence of the cytokine interleukin-12 (IL-12) on humoral immune responses was studied in vivo. CBA/J mice immunized with protein antigens (keyhole limpet hemocyanin, phospholipase A2) adsorbed to aluminum hydroxide (Alum) develop a Th2-like immune response characterized by the production of large amounts of IgG1 as well as some IgE but little IgG2a, IgG2b and IgG3 antibodies. IL-12 is a cytokine that promotes the development and the activation of Th1 cells. Th1 cells are involved in the induction of cellular immunity, which is characterized by low or absent antibody production. On the other hand, some Th1-like immune responses are associated with a strong antibody production of the IgG2a, IgG2b and IgG3 subclasses. Thus, we investigated whether treatment with IL-12 would down-regulate the humoral immune response or stimulate antibody production of the IgG2a, IgG2b and IgG3 subclasses. We observed that: 1) administration of IL-12 to mice together with protein antigens adsorbed to Alum strongly enhanced the humoral immune response by increasing the synthesis of antigen-specific antibodies of the IgG2a, IgG2b and IgG3 subclasses 10- to 1000-fold. The synthesis of IgG1 was not or only slightly (2-5-fold) enhanced, whereas that of the IgE isotype was suppressed. 2) These effects of IL-12 were observed when high (10 micrograms, 100 micrograms) or low doses (0.1 microgram) of antigen were used for immunization. 3) Titration of IL-12 in vitro revealed that IgG2a is strongly up-regulated over a wide dose range of IL-12 (10 to 1000 ng/day). 4) The effects of IL-12 in vivo are at least partially interferon (IFN)-gamma-dependent because an anti-IFN-gamma mAb in combination with IL-12 prevented most of the enhanced IgG2a production. 5) Mice receiving IL-12 showed a strong up-regulation of IFN-gamma but no inhibition of IL-5 synthesis by spleen cells activated ex vivo with antigen. These results suggest that IL-12 is a potent adjuvant for enhancing humoral immunity to protein antigens adsorbed to Alum, primarily by inducing the synthesis of the complement-fixing IgG subclasses 2a, 2b and 3.
The recently discovered cytokine interleukin (IL)-12 is a heterodimeric protein of two disulfide-bonded subunits of 35 and 40 kDa. IL-12 has multiple effects on T cells and natural killer (NK) cells. In particular it appears to be a major factor for the development of cellular immunity. So far activity of the single subunits alone has not been described, however their expression is regulated independently. In this report we demonstrate for the first time that the mouse IL-12 subunit p40 (IL-12p40) specifically antagonizes the effects of the IL-12 heterodimer in different assay systems. The proliferation of mouse splenocytes activated by phorbol ester and IL-12 was inhibited by IL-12p40, whereas the proliferation induced by phorbol ester and IL-2 was not affected. Furthermore, the synthesis of interferon (IFN)-gamma by mouse splenocytes activated with IL-2 and IL-12 was suppressed by IL-12p40. Purified mouse splenic CD4+ T cells produced IFN-gamma upon activation with plate-bound anti-CD3 monoclonal antibody which was enhanced more than tenfold in the presence of IL-12. In this system IL-12p40 inhibited only the enhancement caused by IL-12 but not IFN-gamma synthesis of CD4+ T cells stimulated with anti-CD3 alone. Moreover, IL-12p40 inhibited the effects of IL-12 on differentiated T helper type 1 (Th1) cells. IFN-gamma production by Th1 cells induced in a T cell receptor-independent way by macrophages and IL-2 or macrophages and IL-12 was greatly reduced by IL-12p40 providing evidence for the endogenous synthesis of IL-12 in the Th1 cell, macrophage and IL-2 co-cultures. The specificity of inhibition was clearly demonstrated in the homotypic aggregation assay of Th1 cells. Incubation of Th1 cells with either IL-2 and IL-12 or IL-2 and tumor necrosis factor induces LFA-1/ICAM-1-dependent aggregation. Only IL-2 + IL-12 but not IL-2 + tumor necrosis factor-induced aggregation was inhibited in a dose-dependent manner by IL-12p40. Thus, the IL-12 subunit p40 appears to be a specific inhibitor for the IL-12 heterodimer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.