The first Ni-catalyzed C-O/P-H cross-coupling producing organophosphorus compounds is disclosed. This method features wide generality in regard to both C-O and P-H compounds: for C-O compounds, the readily available alcohol derivatives of aryl, alkenyl, benzyl, and allyl are applicable, and for P-H compounds, both >P(V)(O)H compounds (secondary phosphine oxide, H-phosphinate, and H-phosphonate) and hydrogen phosphines (>P(III)H) can be used as the substrates. Thus, a variety of valuable C(sp(2))-P and C(sp(3))-P compounds can be readily obtained in good to excellent yields by this new strategy.
A silver-free palladium-catalyzed dehydrogenative phosphorylation of terminal alkynes with hydrogen phosphine oxides has been developed. Both aromatic and aliphatic terminal alkynes including those bearing functional groups coupled readily with hydrogen phosphine oxides, producing the corresponding value-added alkynylphosphine oxides in good to excellent yields. This reaction could be easily conducted at gram scales (10 mmol) without any decrease of the reaction efficiency, showing highly potential synthetic value in organic synthesis. A plausible Pd(0)/Pd(II) mechanism is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.