Public transport operators are collecting massive amounts of data from smart card systems. In the Netherlands, every passenger checks in and checks out; this system creates detailed records of demand patterns. In buses and trams, users check in and check out in the vehicle; this factor provides good information on route choice. Options for analyzing smart card data and performing what-if analyses with transport planning software were explored. On the basis of big data, this new generation of transport demand models added to the existing range of transport demand models and approaches. The goal was to provide public transport operators with a simple (easy-to-build) model to perform what-if analyses. The data were converted to passengers per line and an origin–destination matrix between stops. This matrix was assigned to the network to repro-duce the measured passenger flows, and then what-if analysis became possible. With fixed demand, line changes could be investigated. With the introduction of an elastic demand model, changes in the level of service realistically affected passenger numbers. This method was applied to a case study in The Hague, Netherlands. Smart card data were imported into a transport model and connected with the network. The tool proved to be valuable to operators, who gained insights into the effects of small changes.
Due to reduced budgets, higher political expectations and increasing competition between operators, there is growing pressure on public transport companies and authorities to improve their operational efficiency. It is thus of utter importance for them to be able to identify inefficiencies, bottlenecks and potentials in their public transport service. Recorded operational data, which has quickly become more widespread in the last decade, aids greatly in this process and enables operators and authorities to continually improve. In this paper we identify some of the arising possibilities. We first describe the state of publicly available transit data, with an emphasis on the Dutch situation. Next, the value of insights from Automatic Vehicle Location data is demonstrated by examples. Thereafter, a software tool is presented that enables operators and authorities to quickly perform comprehensive operational analyses, and which was able to identify several bottlenecks when applied in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.