Methyltransferase-like 3 (METTL3) is an RNA methyltransferase that mediates modification of N6-methyladenosine (m6A), which serves as an oncogene in various types of cancer. The role of m6A modification in the onset and progression of cancer has attracted growing attention. However, the functional and regulatory mechanisms of METTL3 in non-small cell lung cancer (NSCLC) progression are still poorly understood. In the present study, METTL3 expression in NSCLC tissue was analyzed using the Gene Expression Profiling Interactive Analysis database. Western blotting and reverse transcription-quantitative PCR were performed to evaluate the expression of METTL3 in NSCLC tissue and cell lines. Here, knockdown and overexpression of METTL3 notably decreased NSCLC cell viability, apoptosis and migration in vitro and, as well as tumorigenicity in vivo. Expression of METTL3 was upregulated in NSCLC tissue. METTL3 overexpression promoted cell viability and migration in NSCLC, while knockdown of METTL3 yielded the opposite result in vivo and in vitro. METTL3 increased Bcl-2 translation via m6A modification, which increased viability and enhanced migration of NSCLC cells. METTL3 served as an oncogene in NSCLC via METTL3-mediated Bcl-2 mRNA m6A modification, which indicated that targeting METTL3 may be an effective therapeutic strategy for clinical management of NSCLC.
Melanoma is one of the most aggressive skin cancers worldwide. Although there has been much effort toward improving treatment options over the past few years, there remains an urgent need for effective therapy. Immunotherapy combined with chemotherapy has shown great promise in clinical trials. Here, we studied the cooperative effects of the small molecule drug pimozide, which has a therapeutic effect in melanoma, and RNA interference (RNAi) targeting PD-1, an important immune checkpoint molecule involved in tumor immune escape. PD-1 siRNA was delivered by attenuated Salmonella to melanoma-bearing mice in combination with pimozide. Our results demonstrated that the combination therapy had the optimal therapeutic effect on melanoma. The mechanisms underlying the efficacy involved the induction of apoptosis and an enhanced immune response. This study suggests that immunotherapy based on PD-1 inhibition combined with anticancer drugs could be a promising clinical strategy for the treatment of melanoma.
Hepatocellular carcinoma (HCC) is one of the most aggressive carcinomas. Limited therapeutic options, mainly due to a fragmented genetic understanding of HCC, and major HCC resistance to conventional chemotherapy are the key reasons for a poor prognosis. Thus, new effective treatments are urgent and gene therapy may be a novel option. Signal transducer and activator of transcription 3 (Stat3) is a highly studied member of the STAT family. Inhibition of Stat3 signaling has been found to suppress tumor growth and improve survival, providing a molecular target for cancer therapy. Furthermore, HCC is a hypervascular tumor and angiogenesis plays a crucial role in tumor growth and metastasis. Thus, anti-angiogenic therapy, combined with inhibition of Stat3, may be an effective approach to combat HCC. We tested the effect that the combination therapy consisting of endostatin (a powerful angiogenesis inhibitor) and Stat3-specific small interfering RNA, using a DNA vector delivered by attenuated S. typhimurium, on an orthotopic HCC model in C57BL/6 mice. Although antitumor effects were observed with either single therapeutic treatment, the combination therapy provided superior antitumor effects. Correlated with this finding, the combination treatment resulted in significant alteration of Stat3 and endostatin levels and that of the downstream gene VEGF, decreased cell proliferation, induced cell apoptosis and inhibited angiogenesis. Importantly, combined treatment also elicited immune system regulation of various immune cells and cytokines. This study has provided a novel cancer gene therapeutic approach.
Melanoma is one of the most fatal and therapy-resistant types of cancer; therefore, identifying novel therapeutic candidates to improve patient survival is an ongoing effort. Previous studies have revealed that pimozide is not sufficient to treat melanoma; therefore, enhancing the treatment is necessary. Indoleamine 2, 3-dioxygenase (IDO) is an immunosuppressive, intracellular rate-limiting enzyme, which contributes to immune tolerance in various tumours, including melanoma, and inhibition of IDO may be considered a novel therapeutic strategy when combined with pimozide. The present study aimed to assess the antitumour activities of pimozide in vitro, and to investigate the effects of pimozide combined with L-methyl-tryptophan (L-MT) in vivo. For in vitro analyses, the B16 melanoma cell line was used. Cell cytotoxicity assay, cell viability assay, wound-healing assay and western blotting were conducted to analyse the effects of pimozide on B16 cells. Furthermore, B16 cell-bearing mice were established as the animal model. Haematoxylin and eosin staining, immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end-labelling staining, western blotting and flow cytometry were performed to determine the effects of monotherapy and pimozide and L-MT cotreatment on melanoma. The results demonstrated that pimozide exhibited potent antitumour activity via the regulation of proliferation, apoptosis and migration. Furthermore, the antitumour effects of pimozide were enhanced when combined with L-MT, not only via regulation of proliferation, apoptosis and migration, but also via immune modulation. Notably, pimozide may regulate tumour immunity through inhibiting the activities of signal transducer and activator of transcription (Stat)3 and Stat5. In conclusion, the present study proposed the use of pimozide in combination with the IDO inhibitor, L-MT, as a potential novel therapeutic strategy for the treatment of melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.