A mathematical model of the dive phase is an important research content for improving the accuracy of terminal control in the small unmanned aerial vehicle. The acquisition of the diving model poses new challenges, such as the small installation space, ultra-low flying height of small suicide drones, short flight time, strong coupling, less observable measurement, and elastic deformation of the wings during the drone dive phase. Based on the autoregressive moving average method, a multi-input multioutput noise term topology mathematical model is proposed in this paper. Through an improved least squares identification method, the diving model in the flight test is analyzed and verified. The identification results of the diving model obtained by the proposed method are compared with the least squares method dive model. The results indicate that the mathematical model and identification method proposed in this paper can effectively obtain the parameters of the drone dive model.
Airfoil optimization is an essential task in the aerodynamic layout design of the unmanned aerial vehicle (UAV). An objective optimization function was constructed based on the airfoil power factor and handling stability at various attack angles. The parametric mathematical model of the airfoil and aerodynamic parameter proxy model of airfoil were constructed using the Hicks-Henne improved function and CFD solution sample, focusing on the issues with particle swarm optimization algorithms such as slow convergence, a tendency to fall into local optimal solutions, and oscillation at a late stage; an optimization method for the low-speed airfoil of a small UAV based on improved particle swarm optimization was developed. When compared to standard particle swarm optimization, selective regenerative particle swarm optimization, and improved particle swarm optimization, the results indicate that the maximum thickness of the optimized rear airfoil decreases from 19.77% to 18.76%, the number of iterations decreases from 112 to 31, and the search speed of the improved particle swarm optimization significantly improves; the CFD results indicate that the optimized rear airfoil exhibits superior aerodynamic performance. On average, the airfoil’s maximum lift-to-drag ratio is increased by 11.9%, its maximum power factor is increased by 12.5%, and its pitching moment is reduced by 8.4%. Within the UAV’s speed range, the aerodynamic performance is stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.