Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2·4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment.
Yolk-shell composites with a movable Fe(x)O(y) core and mesoporous SiO2 (mSiO2) shell, together with Pd nanoparticles uniformly anchoring on the inner surface, were prepared. The structure and composition of as-prepared catalysts were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller measurement and Fourier-transform infrared spectroscopy, respectively. They are ideal candidates as nanoreactors for heterogeneous catalysis due to their special structure. The catalytic performance of Fe(x)O(y)/Pd@mSiO2 composites was studied by the reduction of 4-nitrophenol with NaBH4 as a reducing agent. Their reaction rate constant was calculated according to the pseudo-first-order reaction equation. The catalysts could be easily recycled by an external magnetic field due to their superparamagnetic property. Besides good catalytic property, another merit of Fe(x)O(y)/Pd@mSiO2 composites was high stability. We have compared the stability between Fe(x)O(y)/Pd@mSiO2 and Fe3O4@C/Pd composites by ultrasonic treatment and HNO3 solution etching, the stability of the former was much better than the later.
Cobalt chains with lengths of up to 4-20 µm, self-assembled by flowerlike cobalt submicrospheres, have been synthesized at 200°C for 4 h by a solvothermal method with the surfactant poly(vinyl pyrrolidone) (PVP). The average diameter of individual flowerlike submicrospheres is 700-900 nm, which are composed of compact nanosheets with an average thickness of about 50 nm. The products were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The effects of synthetic conditions, such as reaction temperature and the amount of reducing agent, on the morphology and size of the chains were investigated. The growth mechanism of the chains was proposed, based on the evolution of the structure and the morphology with increasing the reaction time. The magnetic hysteresis loops at 5 and 295 K of the chains show ferromagnetic characteristics with coercivities of 347 and 90 Oe, respectively. Our work may shed light on the design fabrication of one-dimensional chainlike structures self-assembled by complex three-dimensional architectures of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.