The precipitation in the forecast period influences flood forecasting precision, due to the uncertainty of the input to the hydrological model. Taking the ZhangHe basin as the example, the research adopts the precipitation forecast and ensemble precipitation forecast product of the AREM model, uses the Xin Anjiang hydrological model, and tests the flood forecasts. The results show that the flood forecast result can be clearly improved when considering precipitation during the forecast period. Hydrological forecast based on Ensemble Precipitation prediction gives better hydrological forecast information, better satisfying the need for risk information for flood prevention and disaster reduction, and has broad development opportunities.
The number of numerical weather prediction (NWP) models is on the rise, and they are commonly used for ensemble precipitation forecast (EPF) and ensemble streamflow prediction (ESP). This study evaluated the reliabilities of two well-behaved NWP centers in the Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE), the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP), in EPF and ESP over a mountain river basin in China. This evaluation was carried out based on both deterministic and probabilistic metrics at a daily temporal scale. The effectiveness of two postprocessing methods, the Generator-based Postprocessing (GPP) method, and the Bayesian Model Averaging (BMA) method were also investigated for EPF and ESP. Results showed that: (1) The ECMWF shows better performances than NCEP in both EPF and ESP in terms of evaluation indexes and representation of the hydrograph. (2) The GPP method performs better than BMA in improving both EPF and ESP performances, and the improvements are more significant for the NCEP with worse raw performances. (3) Both ECMWF and NCEP have good potential for both EPF and ESP. By using the GPP method, there are desirable EPF performances for both ECMWF and NCEP at all 7 lead days, as well as highly skillful ECMWF ESP for 1~5 lead days and average moderate skillful NCEP ESP for all 7 lead days. The results of this study can provide a reference for the applications of TIGGE over mountain river basins.
In order to improve the calculation accuracy of the rainfall probability distribution in related applications, this study aimed to select a theoretical function from applicable functions for three classes of the class-conditional probability density function (CCPD) of hourly rainfall series. The three applicable functions are generalized gamma distribution (GΓD), generalized normal distribution (GND), and Weibull distribution. For the reason that it is hard to distinguish the advantages and disadvantages of the three functions by the probability plot and error analysis of fitted values, optimization criteria are proposed, which are the Bayesian information criterion (BIC) and the estimated accuracy of both the annual average rainfall (AAR) and the annual average continuous rainfall (AACR). The results show that by using three applicable functions in 15 regions, the relative fitting deviations for CCPD1 were less than 2.3% and less than 3.3% for ln(CCPD1). The goodness-of-fit values were all above 0.98 for CCPD1 and greater than 0.94 for ln(CCPD1). The fitting effect of the Weibull distribution was relatively poor from the perspective of the probability plot and error analysis of the fitted values, while the three applicable functions could be used to fit CCPD. GΓD had the highest fitting accuracy for the three classes of CCPDs, but there is concern about overfitting due to its broad spectrum. GND, with fewer parameters, had comparable performance to GΓD, and when fitting CCPD1 using GND, the mean relative fitting deviation was 0.6%, the coefficient of determination was 0.999, and for ln(CCPD1), they were 1.45% and 0.989. At the same time, GND performed well in estimating the AARs, with an 8.6% relative error and a 0.92 correlation coefficient in the fifteen regions, indicating that GND can well reflect the spatial variation characteristics of the AAR. Moreover, the function form of GND is simple. GND follows the parsimonious principle, and it is suitable for the whole domain. Therefore, GND is recommended as the theoretical density function based on the optimization criteria. The genetic algorithm was adopted to obtain the approximate solution of the parameters through optimization, which can simplify the derivation and calculation steps. The multiplicative and additive fitting errors were both used in the objective functions, which gave comprehensive consideration to both ends of the fitting curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.