Entomopathogenic nematodes (EPNs) are insect parasites used as biological control agents. Free-living infective juveniles (IJs) of EPNs employ host-seeking behaviors to locate suitable hosts for infection. We found that EPNs can differentiate between naïve and infected hosts, and that host attractiveness changes over time in a species-specific manner. We used solid-phase microextraction and gas chromatography/mass spectrometry to identify volatile chemical cues that may relay information about a potential host’s infection status and resource availability. Among the chemicals identified from the headspace of infected hosts, 3-Methyl-2-buten-1-ol (prenol) and 3-Hydroxy-2-butanone (AMC) were selected for further behavioral assays due to their temporal correlation with the behavioral changes of IJs towards the infected hosts. Both compounds were repulsive to IJs of Steinernema glaseri and S. riobrave in a dose-dependent manner when applied on an agar substrate. Furthermore, the repulsive effects of prenol were maintained when co-presented with the uninfected host odors, overriding attraction to uninfected hosts. Prenol was attractive to dauers of some free-living nematodes and insect larvae. These data suggest that host-associated chemical cues may have several implications in EPN biology, not only as signals for avoidance and dispersal of conspecifics, but also as attractants for new potential hosts.
Entomopathogenic nematodes (EPNs) have been used in biological control but improvement is needed to realize their full potential for broader application in agriculture. Some improvements have been gained through selective breeding and the isolation of additional species and populations. Having genomic sequences for at least six EPNs opens the possibility of genetic improvement, either by facilitating the selection of candidate genes for hypothesis-driven studies of gene-trait relationships or by genomics-assisted breeding for desirable traits. However, the genomic data will be of limited use without a more mechanistic understanding of the genes underlying traits important for biological control. Additionally, molecular tools are required to fully translate the genomic resources into further functional studies and better biological control.
Chemosensory cues are crucial for entomopathogenic nematodes (EPNs)—a guild of insect-killing parasitic nematodes that are used as biological control agents against a variety of agricultural pests. Dispersal is an essential element of the EPN life cycle in which newly developed infective juveniles (IJs) emerge and migrate away from a resource-depleted insect cadaver in order to search for new hosts. Emergence and dispersal are complex processes that involve biotic and abiotic factors, however, the elements that result in EPN dispersal behaviors have not been well-studied. Prenol is a simple isoprenoid and a natural alcohol found in association with EPN-infected, resource-depleted insect cadavers, and this odorant has been speculated to play a role in dispersal behavior in EPNs. This hypothesis was tested by evaluating the behavioral responses of five different species of EPNs to prenol both as a distal-chemotactic cue and as a dispersal cue. The results indicate that prenol acted as a repulsive agent for all five species tested, while only two species responded to prenol as a dispersal cue.
This chapter discusses the strategies and future directions of genetic improvement of entomophilic nematodes (EPNs) for biological control, focusing on the traits (i.e. infectivity and persistence) that directly influence their performance in the field. The genomic analyses of Heterorhabditis bacteriophora and Steinernema are described. The increase in both EPN species descriptions and in general EPN research bodes well for the future of biological control using EPNs, and is encouraging for the prospects of genetic improvement of EPNs. Genetic improvement of EPNs via selection will continue to be important; however, transgenic organisms have become more common and they allow for improvements that simply are not possible with conventional methods. The advances that have been made and the continued development of molecular tools will be used to address difficult applied and fundamental questions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.