Pittsburgh Compound B PET findings match histopathologic reports of beta-amyloid (Abeta) distribution in aging and dementia. Noninvasive longitudinal studies to better understand the role of amyloid deposition in the course of neurodegeneration and to determine if Abeta deposition in nondemented subjects is preclinical AD are now feasible. Our findings also suggest that Abeta may influence the development of dementia with Lewy bodies, and therefore strategies to reduce Abeta may benefit this condition.
Schizophrenia is widely acknowledged as being a syndrome, consisting of an undefined number of diseases probably with differing pathologies. Although studying a syndrome makes the identification of an underlying pathology more difficult; neuroimaging, neuropsychopharmacological and post-mortem brain studies all implicate muscarinic acetylcholine receptors (CHRM) in the pathology of the disorder. We have established that the CHRM1 is selectively decreased in the dorsolateral prefrontal cortex of subjects with schizophrenia. To expand this finding, we wanted to ascertain whether decreased cortical CHRMs might (1) define a subgroup of schizophrenia and/or (2) be related to CHRM1 genotype. We assessed cortical [ 3 H]pirenzepine binding and sequenced the CHRM1 in 80 subjects with schizophrenia and 74 age sex-matched control subjects. Kernel density estimation showed that [ 3 H]pirenzepine binding in BA9 divided the schizophrenia, but not control, cohort into two distinct populations. One of the schizophrenia cohorts, comprising 26% of all subjects with the disorder, had a 74% reduction in mean cortical [ 3 H]pirenzepine binding compared to controls. We suggest that these individuals make up 'muscarinic receptor-deficit schizophrenia' (MRDS). The MRDS could not be separated from other subjects with schizophrenia by CHRM1 sequence, gender, age, suicide, duration of illness or any particular drug treatment. Being able to define a subgroup within schizophrenia using a central biological parameter is a pivotal step towards understanding the biochemistry underlying at least one form of the disorder and may represent a biomarker that can be used in neuroimaging.
Magnetic resonance imaging markers of structural brain aging and performance on neuropsychological tests are powerful predictors of dementia. We need to understand the trajectory of regional brain volume change and cognitive decline in patients after stroke. This will allow future risk stratification for prognostic counseling, service planning, and early therapeutic intervention.
The primary constituent of the amyloid plaque, beta-amyloid (Abeta), is thought to be the causal "toxic moiety" of Alzheimer's disease. However, despite much work focused on both Abeta and its parent protein, amyloid precursor protein (APP), the functional roles of APP and its cleavage products remain to be fully elucidated. Protein-protein interaction networks can provide insight into protein function, however, high-throughput data often report false positives and are in frequent disagreement with low-throughput experiments. Moreover, the complexity of the CNS is likely to be under represented in such databases. Therefore, we curated the published work characterizing both APP and Abeta to create a protein interaction network of APP and its proteolytic cleavage products, with annotation, where possible, to the level of APP binding domain and isoform. This is the first time that an interactome has been refined to domain level, essential for the interpretation of APP due to the presence of multiple isoforms and processed fragments. Gene ontology and network analysis were used to identify potentially novel functional relationships among interacting proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.