Recently, several molecular imaging strategies have developed to image bacterial infections in humans. Nuclear approaches, specifically positron emission tomography (PET), affords sensitive detection and the ability to non-invasively locate infections deep within the body. Two key radiotracer classes have arisen: metabolic approaches targeting bacterial specific biochemical transformations, and antibiotic-based approaches that have inherent selectivity for bacteria over mammalian cells. A critical question for clinical application of antibiotic radiotracers is whether resistance to the template antibiotic abrogates specific uptake, thus diminishing the predictive value of the diagnostic test. We recently developed small-molecule PET radiotracers based on the antibiotic trimethoprim (TMP), including [11C]-TMP, and have shown their selectivity for imaging bacteria in preclinical models. Here, we measure the in vitro uptake of [11C]-TMP in pathogenic susceptible and drug-resistant bacterial strains. Both resistant and susceptible bacteria showed similar in vitro uptake, which led us to perform whole genome sequencing of these isolates to identify the mechanisms of TMP resistance that permit retained radiotracer binding. By interrogating these isolate genomes and a broad panel of previously sequenced strains, we reveal mechanisms where uptake or binding of TMP radiotracers can potentially be maintained despite the annotation of genes conferring antimicrobial resistance. Finally, we present several examples of patients with both TMP-sensitive and drug-resistant infections in our first-in-human experience with [11C]-TMP. This work underscores the ability of an antibiotic radiotracer to image bacterial infection in patients, which may allow insights into human bacterial pathogenesis, infection diagnosis, and antimicrobial response monitoring.
BACKGROUND Several molecular imaging strategies can identify bacterial infections in humans. PET affords the potential for sensitive infection detection deep within the body. Among PET-based approaches, antibiotic-based radiotracers, which often target key bacterial-specific enzymes, have considerable promise. One question for antibiotic radiotracers is whether antimicrobial resistance (AMR) reduces specific accumulation within bacteria, diminishing the predictive value of the diagnostic test. METHODS Using a PET radiotracer based on the antibiotic trimethoprim (TMP), [ 11 C]-TMP, we performed in vitro uptake studies in susceptible and drug-resistant bacterial strains and whole-genome sequencing (WGS) in selected strains to identify TMP resistance mechanisms. Next, we queried the NCBI database of annotated bacterial genomes for WT and resistant dihydrofolate reductase (DHFR) genes. Finally, we initiated a first-in-human protocol of [ 11 C]-TMP in patients infected with both TMP-sensitive and TMP-resistant organisms to demonstrate the clinical feasibility of the tool. RESULTS We observed robust [ 11 C]-TMP uptake in our panel of TMP-sensitive and -resistant bacteria, noting relatively variable and decreased uptake in a few strains of P . aeruginosa and E . coli . WGS showed that the vast majority of clinically relevant bacteria harbor a WT copy of DHFR, targetable by [ 11 C]-TMP, and that despite the AMR, these strains should be “imageable.” Clinical imaging of patients with [ 11 C]-TMP demonstrated focal radiotracer uptake in areas of infectious lesions. CONCLUSION This work highlights an approach to imaging bacterial infection in patients, which could affect our understanding of bacterial pathogenesis as well as our ability to better diagnose infections and monitor response to therapy. TRIAL REGISTRATION ClinicalTrials.gov NCT03424525. FUNDING Institute for Translational Medicine and Therapeutics, Burroughs Wellcome Fund, NIH Office of the Director Early Independence Award (DP5-OD26386), and University of Pennsylvania NIH T32 Radiology Research Training Grant (5T32EB004311-12).
Congenital tricuspid valve disease (Ebstein’s anomaly, tricuspid valve dysplasia) with severe tricuspid regurgitation and cardiomegaly is associated with poor prognosis. Fetal echocardiography can accurately measure right atrial enlargement, which is associated with a poor prognosis in the fetus with tricuspid valve disease. Fetal lung volumetric assessments have been used in an attempt to predict viability of fetuses using ultrasonogram and prenatal MRI. We describe a fetus with tricuspid dysplasia, severe tricuspid regurgitation, right atrial enlargement and markedly reduced lung volumes. The early gestational onset of cardiomegaly with bilateral lung compression raised the possibility of severe lung hypoplasia with decreased broncho-alveolar development. Use of fetal echocardiography with measurement of pulmonary artery size combined with prenatal MRI scanning of lung volumes resulted in an improved understanding of this anomaly and directed the management strategy towards a successful Fontan circulation.
Kinetic and static analysis of poly-(adenosine diphosphate-ribose) polymerase-1 (PARP-1) targeted 18 F-FluorThanatrace ( 18 F-FTT) PET images of ovarian cancer
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.