Melanin is a free‐radical scavenger, antioxidant, and broadband absorber of ultraviolet (UV) radiation which protects the skin from environmental carcinogenesis. However, melanin synthesis and UV‐induced reactive melanin species are also implicated in melanocyte genotoxicity. Here, we attempted to reconcile these disparate functions of melanin using a UVB‐sensitive, NRAS‐mutant mouse model, TpN. We crossed TpN mice heterozygous for an inactivating mutation in Tyrosinase to produce albino and black littermates on a C57BL/6J background. These animals were then exposed to a single UVB dose on postnatal day three when keratinocytes in the skin have yet to be melanized. Approximately one‐third (35%) of black mice were protected from UVB‐accelerated tumor formation. However, melanoma growth rates, tumor mutational burdens, and gene expression profiles were similar in melanomas from black and albino mice. Skin from albino mice contained more cyclobutane pyrimidine dimer (CPD) positive cells than black mice 1‐h post‐irradiation. However, this trend gradually reversed over time with CPDs becoming more prominent in black than albino melanocytes at 48 h. These results show that in the absence of epidermal pigmentation, melanocytic melanin limits the tumorigenic effects of acute UV exposure but fails to protect melanocytes from UVB‐induced mutagenesis.
An increasing number of cancer subtypes are treated with front‐line immunotherapy. However, approaches to overcome primary and acquired resistance remain limited. Preclinical mouse models are often used to investigate resistance mechanisms, novel drug combinations, and delivery methods; yet most of these models lack the genetic diversity and mutational patterns observed in human tumors. Here we describe a series of 13 C57BL/6J melanoma cell lines to address this gap in the field. The Ohio State University‐Moffitt Melanoma Exposed to Radiation (OSUMMER) cell lines are derived from mice expressing endogenous, melanocyte‐specific, and clinically relevant Nras driver mutations (Q61R, Q61K, or Q61L). Exposure of these animals to a single, non‐burning dose of ultraviolet B accelerates the onset of spontaneous melanomas with mutational patterns akin to human disease. Furthermore, in vivo irradiation selects against potent tumor antigens, which could prevent the outgrowth of syngeneic cell transfers. Each OSUMMER cell line possesses distinct in vitro growth properties, trametinib sensitivity, mutational signatures, and predicted antigenicity. Analysis of OSUMMER allografts shows a correlation between strong, predicted antigenicity and poor tumor outgrowth. These data suggest that the OSUMMER lines will be a valuable tool for modeling the heterogeneous responses of human melanomas to targeted and immune‐based therapies.
An increasing number of cancer subtypes are treated with front-line immunotherapy. However, approaches to overcome primary and acquired resistance remain limited. Pre-clinical mouse models are often used to investigate resistance mechanisms, novel drug combinations, and delivery methods; yet most of these models lack the genetic diversity and mutational patterns observed in human tumors. Here we describe a series of thirteen C57BL/6J melanoma cell lines to address this gap in the field. The Ohio State University-Moffitt Melanoma Exposed to Radiation (OSUMMER) cell lines are derived from mice expressing endogenous, melanocyte-specific, and clinically relevant Nras driver mutations (Q61R, Q61K, or Q61L). Exposure of these animals to a single, non-burning dose of ultraviolet B accelerates the onset of spontaneous melanomas with mutational patterns akin to human disease. Furthermore, in vivo irradiation selects against potent tumor antigens, which could prevent the outgrowth of syngeneic cell transfers. Each OSUMMER cell line possesses distinct in vitro growth properties, trametinib sensitivity, mutational signatures, and predicted antigenicity. Analysis of OSUMMER allografts shows a correlation between strong, predicted antigenicity and poor tumor outgrowth. These data suggest that the OSUMMER lines will be a valuable tool for modeling the heterogeneous responses of human melanomas to targeted and immune-based therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.