Adverse prenatal environment, such as intrauterine growth retardation (IUGR), increases the risk for negative neurobehavioral outcomes. IUGR, affecting approximately 10% of all US infants, is a known risk factor for ADHD, schizophrenia spectrum disorders and addiction. Mouse dams were fed a protein deficient (8.5% protein) or isocaloric control (18% protein) diet through pregnancy and lactation (a well validated rodent model of IUGR). Dopamine-related gene expression, dopamine content and behavior were examined in adult offspring. IUGR offspring have 6-8 fold overexpression of dopamine (DA)-related genes (tyrosine hydroxylase (TH) and dopamine transporter) in brain regions related to reward processing (ventral tegmental area (VTA), nucleus accumbens, Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. DISCLOSURE/CONFLICTS OF INTERESTZ Vucetic, K Totoki, H. Schoch, KW Whitaker, T. E. Hill-Smith, and TM Reyes declare no conflicts of interest, either financial or otherwise. Irwin Lucki has been on the Scientific Advisory Board for Wyeth and has received research support from AstraZeneca, Wyeth, Forest and Epix pharmaceutical companies during the past 3 years. NIH Public Access Author ManuscriptNeuroscience. Author manuscript; available in PMC 2011 June 30. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript prefrontal cortex (PFC)) and homeostatic control (hypothalamus), as well as increased number of TH-ir neurons in the VTA and increased dopamine in the PFC. Cyclin-dependent kinase inhibitor 1C (Cdkn1c) is critical for dopaminergic neuron development. Methylation of the promoter region of Cdkn1c was decreased by half and there was a resultant 2-7 fold increase in Cdkn1c mRNA expression across brain regions. IUGR animals demonstrated alterations in dopamine-dependent behaviors, including altered reward-processing, hyperactivity and exaggerated locomotor response to cocaine.These data describe significant dopamine-related molecular and behavioral abnormalities in a mouse model of IUGR. This animal model, with both face validity (behavior) and construct validity (link to IUGR and dopamine dysfunction) may prove useful in identifying underlying mechanisms linking IUGR and adverse neurobehavioral outcomes such as ADHD. Keywordsdopamine; neurodevelopmental programming; epigenetics; addiction; perinatal nutrition A suboptimal prenatal environment, typically indicated by low birth weight or being small for gestational age (SGA), can increase the risk for adverse neurobehavioral outcomes, including ADHD (Hultman et al., 2007;Lahti et al., 2006), schizophr...
Rationale Buprenorphine (BPN) has been shown to rapidly improve mood in treatment-resistant depressed patients in small clinical studies. However, BPN’s effects in preclinical tests for mood and antidepressant efficacy are largely unexplored. Objective The current study examined the effects of BPN in the forced swim test (FST) and novelty-induced hypophagia (NIH) test as measures of antidepressant and anxiolytic-like effects in C57BL/6J mice. Microdialysis was used to measure whether BPN engaged KORs in the nucleus accumbens shell (NAcSh) at a behaviorally active dose (0.25 mg/kg). Methods BPN was tested in the FST at both 30 min and 24 h post administration. Also measured in the FST at 24 h post administration were the KOR antagonist norbinaltorphimine (nor-BNI), the MOR agonist morphine and the reference antidepressant desipramine. The anxiolytic effects of BPN were examined in the NIH test 24 h after treatment. The effects of acute injection of BPN and the KOR agonist U50,488 were measured on extracellular DA levels in the NAcSh. Results BPN produced significant reductions in FST immobility without changing locomotor activity and reduced approach latencies in the novel environment of the NIH test when tested 24 h after treatment. Repeated daily BPN injections for 6 d did not produce tolerance to these behavioral effects. nor-BNI produced a similar antidepressant-like response in the FST 24 h postinjection but morphine and desipramine were ineffective. BPN (0.25 mg/kg) did not alter DA levels when given alone but prevented the KOR agonist U50,488 from reducing DA levels. Conclusions Acute and subchronic treatment with BPN produced antidepressant and anxiolytic-like responses in mice at doses that engage KORs. These studies support the clinical evidence that BPN may be a novel rapid-acting antidepressant medication and provides rodent models for investigating associated neurochemical mechanisms.
Genetic studies have associated deficient function of the serine/threonine kinase Akt1 with schizophrenia. This disorder is associated with developmental, structural, and functional abnormalities of the hippocampus that could be traced to abnormal Akt1 function. To establish a closer connection between Akt1 and hippocampal function, mice with a selective deletion of Akt1 (Akt1−/− mice) were examined for physiological and behavioral outcomes dependent on the hippocampus and associated with schizophrenia. Genetic deletion of Akt1 was associated with both impaired proliferative capacity of adult-born hippocampal progenitors and hippocampal long-term potentiation, indicating deficient functions of this brain region associated with neuroplasticity. Moreover, Akt1−/− mice demonstrated impairments in contextual fear conditioning and recall of spatial learning, behaviors known to selectively involve the hippocampus. Akt1−/− mice also showed reduced prepulse inhibition of the acoustic startle response, a sensorimotor gating response that is perturbed in schizophrenia. Postmortem tissue samples from patients with schizophrenia showed significant reductions of phosphorylated Akt levels in hilar neurons of the dentate gyrus, the neurogenic zone of the hippocampus. Taken together, these results implicate the Akt1 isoform in regulating hippocampal neuroplasticity and cognition and in contributing to the etiology of schizophrenia.
Neurogenesis is a mechanism through which antidepressants may produce therapeutic effects. There is a dearth of information regarding the effects of antidepressants on neurogenesis and neurotrophin mobilization in females. This study examined sex differences in the alteration of cell proliferation and survival in multiple regions of the brain. Additional experiments examined brain-derived neurotrophic factor (BDNF) levels and pharmacokinetics of fluoxetine to determine whether they mediate sex differences. MRL/MpJ mice were treated with fluoxetine (5 and 10 mg/kg b.i.d.) for 21 days and received injections of 5-bromo-2Ј-deoxyuridine (200 mg/kg) to measure DNA synthesis. In the hippocampus, fluoxetine increased cell proliferation at both doses; females treated with 10 mg/kg produced more new cells than males. Fluoxetine did not alter survival in males, but 10 mg/kg reduced survival in females. In the frontal cortex, fluoxetine increased cell proliferation and survival in males treated with 10 mg/kg. In the cerebellum and amygdala, 10 mg/kg fluoxetine increased cell proliferation in both sexes but did not alter the incorporation of the new cells. Fluoxetine increased BDNF levels in the hippocampus of both sexes. BDNF levels correlated with cell proliferation in males but not females. Brain and plasma levels indicated that females metabolized fluoxetine faster than males and produced more of the metabolite norfluoxetine. These data suggest that fluoxetine acts on multiple areas of the brain to increase cell proliferation, and the pattern of activation differs between males and females. Sex-specific effects of fluoxetine on neurotrophin mobilization and pharmacokinetics may contribute to these differences in neural plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.