Molecular neurobiological insight into human nervous tissues is needed to generate next-generation therapeutics for neurological disorders such as chronic pain. We obtained human dorsal root ganglia (hDRG) samples from organ donors and performed RNA-sequencing (RNA-seq) to study the hDRG transcriptional landscape, systematically comparing it with publicly available data from a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene coexpression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also analyzed, including transcription factors, G-protein-coupled receptors, and ion channels. Our analyses reveal an hDRG-enriched protein-coding gene set (∼140), some of which have not been described in the context of DRG or pain signaling. Most of these show conserved enrichment in mDRG and were mined for known drug-gene product interactions. Conserved enrichment of the vast majority of transcription factors suggests that the mDRG is a faithful model system for studying hDRG, because of evolutionarily conserved regulatory programs. Comparison of hDRG and tibial nerve transcriptomes suggests trafficking of neuronal mRNA to axons in adult hDRG, and are consistent with studies of axonal transport in rodent sensory neurons. We present our work as an online, searchable repository (https://www.utdallas.edu/bbs/painneurosciencelab/sensoryomics/drgtxome), creating a valuable resource for the community. Our analyses provide insight into DRG biology for guiding development of novel therapeutics and a blueprint for cross-species transcriptomic analyses.
Natural killer (NK) cell clearance of tumor cell emboli following surgery is thought to be vital in preventing postoperative metastases. Using a mouse model of surgical stress, we transferred surgically stressed NK cells into NK-deficient mice and observed enhanced lung metastases in tumor-bearing mice as compared with mice that received untreated NK cells. These results establish that NK cells play a crucial role in mediating tumor clearance following surgery. Surgery markedly reduced NK cell total numbers in the spleen and affected NK cell migration. Ex vivo and in vivo tumor cell killing by NK cells were significantly reduced in surgically stressed mice. Furthermore, secreted tissue signals and myeloid-derived suppressor cell populations were altered in surgically stressed mice. Significantly, perioperative administration of oncolytic parapoxvirus ovis (ORFV) and vaccinia virus can reverse NK cell suppression, which correlates with a reduction in the postoperative formation of metastases. In human studies, postoperative cancer surgery patients had reduced NK cell cytotoxicity, and we show for the first time that oncolytic vaccinia virus markedly increases NK cell activity in patients with cancer. These data provide direct in vivo evidence that surgical stress impairs global NK cell function. Perioperative therapies aimed at enhancing NK cell function will reduce metastatic recurrence and improve survival in surgical cancer patients. Cancer Res; 73(1); 97-107. Ó2012 AACR.
SummaryWe generated RNA sequencing data from human DRG samples and comprehensively compared this transcriptome to other human tissues and a matching panel of mouse tissues. Our analysis uncovered functionally enriched genes in the human and mouse DRG with important implications for understanding sensory biology and pain drug discovery. AbstractMolecular neurobiological insight into human nervous tissues is needed to generate next generation therapeutics for neurological disorders like chronic pain. We obtained human Dorsal Root Ganglia (DRG) samples from organ donors and performed RNA-sequencing (RNA-seq) to study the human DRG (hDRG) transcriptional landscape, systematically comparing it with publicly available data from a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene co-expression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Our analyses reveal an hDRG-enriched protein-coding gene set (~140), some of which have not been described in the context of DRG or pain signaling. A majority of these show conserved enrichment in mDRG, and were mined for known drug -gene product interactions. Comparison of hDRG and tibial nerve transcriptomes suggest pervasive mRNA transport of sensory neuronal genes to axons in adult hDRG, with potential implications for mechanistic insight into chronic pain in patients. Relevant gene families and pathways were also analyzed, including transcription factors (TFs), g-protein coupled receptors (GCPRs) and ion channels. We present our work as an online, searchable repository (http://www.utdallas.edu/bbs/painneurosciencelab/DRGtranscriptome), creating a valuable resource for the community. Our analyses provide insight into DRG biology for guiding development of novel therapeutics, and a blueprint for cross-species transcriptomic analyses. peer-reviewed)
Focal thermal therapy (Heat), cryosurgery (Cryo) and irreversible electroporation (IRE) are increasingly used to treat cancer. However, local recurrence and systemic spread are persistent negative outcomes. Nevertheless, emerging work with immunotherapies (i.e., checkpoint blockade or dendritic cell (DC) vaccination) in concert with focal therapies may improve outcomes. To understand the role of focal therapy in priming the immune system for immunotherapy, an in vitro model of T cell response after exposure to B16 melanoma cell lysates after lethal exposures was designed. Exposure included: Heat (50 C, 30 min), Cryo (À80 C, 30 min) and IRE (1250 V/cm, 99 pulses, 50 ms pulses with 1 Hz intervals). After viability assessment (CCK-8 assay), cell lysates were collected and assessed for protein release (BCA assay), protein denaturation (FTIR-spectroscopy), TRP-2 antigen release (western blot), and T cell activation (antigen-specific CD8 T cell proliferation). Results showed IRE released the most protein and antigen (TRP-2), followed by Cryo and Heat. In contrast, Cryo released the most native (not denatured) protein, compared to IRE and Heat. Finally, IRE dramatically outperformed both Cryo and Heat in T cell activation while Cryo modestly outperformed Heat. This study demonstrates that despite all focal therapies ability to destroy cells, the 'quantity' (i.e., amount) and 'quality' (i.e., molecular state) of tumor protein (including antigen) released can dramatically change the ensuing priming of the immune system. This suggests protein-based metrics whereby focal therapies can be designed to prime the immune system in concert with immunotherapies to eventually achieve improved and durable cancer treatment in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.